《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
这本生动、简洁的书基于作者在莫斯科大学力学数学系的本科生课程讲义,涵盖了计算的一般理论的基本概念。《可计算函数》从可计算函数的定义和一个算法开始,讨论了可判定性、可数性、通用函数、编号系统及其性质、m-完全性、不动点定理、算术分层、oracle计算、不可判定性的度。作者还介绍了一些特殊的函数模型,如Turing机和递归函数。 《可计算函数》可供数学和计算机专业的本科生阅读,也可供所有希望学习计算的一般理论的基础知识的数学家和程序员使用。
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、*模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、 函数和b函数、椭圆函数、cauchy型积分。上列*后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。 《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
本书系统介绍了复变函数的基本理论,包括复数的运算、复变函数的概念、解析函数的概念、解析函数的柯西积分理论、魏尔斯特拉斯级数理论、黎曼共形映射理论以及解析函数空间的有趣介绍等,体现了基本的复分析思想方法,适合于从事国际热门的解析函数空间上函数理论研究和算子理论研究的研究生在本科阶段的基本素养的培养。由于函数空间理论密切联系于工科电子通信类学科的信息处理与信号处理研究,故而也适合于电子通信类学科的面上公共课“复变函数”课程的教学。
《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》对于无穷乘积及其对解析函数的应用给予了更深层次的介绍,《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》总结了一些计算无穷乘积的常用方法和惯用技巧,叙述严谨、清晰、易懂。《超越普里瓦洛夫:无穷乘积与它对解析函数的应用卷》适合于高等院校数学与应用数学专业学生学习,也可供数学爱好者及教练员作为参考。
《极值与*值(下卷)》共分4章,介绍了如何运用冻结变量求极值,并阐述了极值与*值的相关应用,变量代换法是求函数极值与*值的方法之一,它可使问题简化,本文对此进行了探讨。《极值与*值(下卷)》适合中学师生及广大数学爱好者阅读学习。
《数林外传系列:凸函数与琴生不等式》将中学阶段的大量初等不等式进行了较系统的归类和介绍,阅读本书可以开拓读者在不等式方面的视野,提高对不等式的认知和解决同类问题的能力,《数林外传系列:凸函数与琴生不等式》适合中学数学教师和对不等式感兴趣的高中学生。 本书以凸函数与琴式不等式为纲,将中等数学中的二百多个有趣的不等式有序地组织起来,可以大大拓广高中学生、中学数学老师在不等式方面的视野,有利于提高高中学生在不等式方面的数学修养。而不等式是高校自主招生、高考、数学竞赛中不可缺少的内容。全书资料主要来源有两部分,一部分取自国外英文中等数学杂志,另一部分是作者自编的,取自英文中等数学杂志的题目的解答很多都由作者改写,目的是降低阅读目槛,使具有高一数学知识的学生能读懂全书。本书一个鲜
本书对于复变函数给予了更深层次的介绍,总结了一些计算复变函数的常用方法和惯用技巧,叙述严谨、清晰、易懂。
The implicit function theorem is. along with its close cousinthe inverse func- tion theorem, one of the most important, and oneof the oldest, paradigms in modcrn mathemarics. One can see thegerm of the idea for the implicir func tion theorem in the writingsof Isaac Newton (1642-1727), and Gottfried Leib-niz's (1646-1716)work cxplicitty contains an instance of implicitdifferentiation. Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that isessentially a version of the inverse function theorem, ic wasAugustin-Louis Cauchy (1789-1857) who approached the implicitfunction theorem with mathematical rigor and it is he who isgencrally acknowledgcd as the discovcrer of the theorem. InChap-ter 2, we will give details of the contributions of Newton,Lagrange, and Cauchy to the development of the implicit functiontheorem.
泛函分析是大学数学专业一门重要的专业课,其高度的概括性与抽象性也使其成为数学专业较难学习的课程之一。本书试图以漫谈的方式将泛函分析的基础内容娓娓道来,尽可能将这一抽象的课程通俗清楚地表达出来,方便学生对这门课程的深入了解。本书有两大特色,一是按照空间上的映射与空间的结构相适应的思想对教学内容进行编排,并体现在每章的标题上,使泛函分析中的空间与算子两大内容有机结合;二是将泛函分析史的知识以补充阅读的形式纳入全书,希望这也是对现行数学史教学改革的一个有益尝试。本书是在编者近10年的实践教学基础上编写而成。
本书共分五章: 章论述非线性算子的一般性质,包括连续性、有界性、全连续性、可微性等,并给出了隐函数定理和反函数定理。 第二章建立拓扑度理论,不仅建立了重要的有限维空间连续映象Brouwer度和Banach空间全连 续场的Leray-Schauder度,而且论述了较常用的凝聚场的拓扑度和A-proper映象的广义拓扑度。 第三章将半序和拓扑度(不动点指数)相结合来研究非线性算子方程的正解,讨论了常用的凹算子和凸算子的正解及多解问题。 第四章主要证明强制半连续单调映象的满射性和强制多值极大单调映象的满射性。 第五章论述非线性问题中的变分方法,既包括古典的极值理论,也包括属于大范围变分学的Minim ax原理和Mountain Pass引理等。 书中包括了对于非线性积分方程、常微分方程以及二阶半线性椭圆型偏微分方程的应用。 本书可
本书系统地论述了解析函数的边值问题及其在奇异积分 方程上应用的基本的内容,也包括了著者本人的一些研究工作,是函数论分支方面的一本专著。具备数学分析、线性代数和复变函数基本知识的读者可顺利阅读本书。它可作为大学数学专业、应用数学专业高年级学生和研究生的教材或教学参考书。由于这一分支在实际问题中有着广泛的应用,本书也可作为有关科技研究人员的参考用书。
本书第三版是在第二版的基础上,集撷作者多年教学心得和科研成果,并根据1988年全国复变函数编写提纲讨论会精神修订的。此次修订着眼于进一步提高质量,更加适应多数学校的教学需要,保留第二版阐述细致,便于自学的特点,对已发现的错误和不妥之处,予以改正。 本书内容包括:复数与复变函数、解析函数、复变函数的积分、解析函数的幂级数表示法、解析函数的洛朗展式与孤立奇点、留数理论及其应用、共形映射、解析延拓和调和函数共九章。对于加上*号内容,供学有余力的学生选学。 本书可作为高等师范院校数学系的教材,也可为其他理工院校、教育学院所选用。
本书是实变函数课程的学习辅导用书,其内容是在作者编写的普通高等教育 九五 *重点教材《实变函数论》(北京大学出版社,2001年)的基础上添加新题目后整理而成。全书共分六章,内容包括:集合与点集,Lebesgue测度,可测函数,Lebesgue积分,微分与不定积分,Lp空间等。 本次修订,主要添加了一些比较简单、利于学生掌握的习题,删去了许多过难的内容。同时,为了控制篇幅,删去了与配套教材中重复的知识内容。
本书按*高等学校的复变函数与积分变换课程教学大纲要求编写,知识体系完整,逻辑性、系统性强,例题及习题丰富.内容包括复变函数与积分变换两部分,其中复变函数内容包括复数与复变函数、解析函数、复积分、复级数、留数定理、保形映射;积分变换内容包括傅里叶(Fourier)变换及性质、拉普拉斯(Laplace)变换及性质、积分变换的应用.本书每章节都配有适量习题,每章附有小结和总习题,习题附有答案,方便读者自学、归纳和复习.书中附有“*”者,可供有需要的专业选用. 本书可作为高等学校理工科相关专业师生的教学用书或教学参考书,也可供科技工作者参考.
本书是实变函数课程的学习辅导用书,其内容是在作者编写的普通高等教育“九五”*重点教材《实变函数论》(北京大学出版社,2001年)的基础上添加新题目后整理而成。全书共分六章,内容包括:集合与点集,Lebesgue测度,可测函数,Lebesgue积分,微分与不定积分,Lp空间等。 周民强教授主讲实变函数课程数十年,深谙其中的脉络以及初学者的疑难与困惑。多年的教学经验使作者认识到:要使学生学好实变函数课,除了要有一本好教材外,还应有恰当的解题指南类书籍给予配合,才能提高教学质量,达到好的教学效果。对此,作者在两个方面对本书的选题与命题下了功夫:一是密切结合基本理论与方法;二是覆盖面广、放大题量,以拓广视野,开阔思路。此外,从难易角度看,书中编有初、中、高三种程度的各类习题,读者应根据教与学的实际情况作出取舍
本书主要介绍泛函分析的基本知识前5章介绍距离空间、线性赋范空间、内积空间和索波列夫空间、线性算子、线性泛函:第6章介绍泛函的极值及算子方程的弱形式,尤其详细介绍了弹性力学方程和不可压缩流体的弱形式的表述:第7章介绍算子方程弱形式解的存在和性:第8章介绍基于变分原理的各种近似方法……李滋法,布波诺夫-伽罗金法,小二乘法,子域法,康托罗维奇及楚瑞夫茨法等半解析法,同时附有详尽的例题:第9章从泛函分析的角度表述有限单元法(协调元、杂交元、拟协调元和半解析有限单元),以加深读者对有限单元法本质的理解。 本书叙述浅显易懂,公式推导详尽,可读性强,可作为工程专业高年级学生和研究生学习泛函分析之用。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考。
本书是为大学非基础数学专业“实变函数与泛函分析”课程编写的教材。它的先修课程是数学分析或物理类的高等数学。全书共分6章,内容包括:集合,欧氏空间,Lebesgtle测度,Lebesgue可测函数,Lebesgue积分,测度空间,测度空间上的可测函数和积分,Lp空间,L2空间,卷积与Fourier变换,Hilbert空间理论,Hilbert空间上的有界线性算子,Banach空间,Banach空间上的有界线算子,Banach空间上的连续线性泛函、共轭空间与共轭算子,Banach空间的收敛性与紧致性。 本书在选材上注重了少而精,突出重点,并充分地反映了实变函数论与泛函分析中的核心内容;在内容的处理上,体现了由浅入深,循序渐进的原则;在介绍新理论的同时,既阐明它的背景,又介绍它与前面的的理论问的联系;在叙述表达上,严谨精练,清晰易读,便于教学与自学。为便于读者复习、巩固、理解和拓
《从一元一次方程到伽罗瓦理论》从 解三次和四次多项式方程的故事 、 向五次方程进军 、 一些数学基础 、 扩域理论 、 尺规作图问题 、 两类重要的群与一类重要的扩域 、 伽罗瓦理论 及 伽罗瓦理论的应用 八个方面逐步展开。按历史发展,从解一元一次方程讲起,详述了一元二次方程、一元三次方程,以及一元四次方程的各种解法,从而自然地引出了群、域,以及域的扩张等概念。在讨论了集合论后,又用近代方法详细阐明了对称群、可迁群、可解群、有限扩域、代数扩域、正规扩域以及伽罗瓦理论等,引导读者一步步地去解决一系列重大的古典难题,如尺规作图问题、三次实系数不可约方程的 不可简化情况 ,以及伽罗瓦的根式可解判别定理等。 《从一元一次方程到伽罗瓦理论》可供高中学生、理工科大学生、大中学校数学教师,以及广大的爱好研读数学