《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相
本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
本书中附有“八大问题”供有兴趣的读者研究探讨。大学数学系的师生、中学数学教师和喜爱数学的高年级学生,均可读懂本书的绝大部分内容。本书是对“*值”、“曲线、曲面方程”、“解析法”等概念和方法进行深入发掘的结果,因此,对中学、大学的数学教学,有很高的参考价值。 本书通过建立多边形、组合图形和多面体的方程,实现对折边与组合图形进行解析研究的梦想。书中建立了很多的方程,给出了已知图形构建其*值方程和已知方程画出图形的一系列方法,并对方程给出了若干应用。
本书是关于广义函数的本专著。全书共分九章。书中系统总结、高度概括了作者L.施瓦兹当年得以获得“菲尔兹奖”的主要工作。讨论了广义函数的各种基本性质、运算与变换,特别是阐明了著名的Dirac函数其实是一个测度而不是一个函数。从而为Dirac测度在量子力学以及其他学科中的广泛应用打下了坚实的数学基础。 本书包含了当时与广义函数论有关的许多重要的理论和原始思想。在其法文版首次出版后半个多世纪的今天仍有理论价值和参考价值,尤其适合于数学系高年级本科生或研究生研读。
无
《同调论(第2版)》是一部代数拓扑领域的入门级书籍,特别强调同调理论基础和应用。具备abelian群和点集拓扑的基本知识完全读懂这《同调论(第2版)》。章既讲述奇异同调的本质,又介绍一些重要的应用。这样,学生可以很好的抓住材料的本质。紧接着讲述了接着空间、有限cw复杂度、eilenberg-steenrod定理、上同调积、流形、庞加莱对偶和不动点理论。通书运用大量的例子和图表,让表述尽可能的清楚。以基本概念为核心,一些*的案例尽可能避免。《同调论(第2版)》终目标是作为本科生教程或者自学教程。在第二版中进行了大量的扩展,增加了新的一章,包括覆盖定理,以及许多练习。理论方法再次证明了如何运用提出问题的方式近而产生基础群及其性质。目次:奇异同调理论;映射的接着空间;eilenberg-steenrod定理;覆盖定理;乘积;流形和庞加莱对偶性;不
本书从数学学科的特色、人文欣赏的视野着手,运用通俗的语言、生动的例子介绍函数的数学文化内涵及其函数知识在现实世界中的广泛应用主要内容包括函数概念与函数图像常识及其美学欣赏、相遇比例函数、相遇增长函数、相遇周期函数的数学文化内涵欣赏及其实际应用。
内容简介: 《不定方程及其应用(上)》涉及数论、有限群论、组合数学、图论等多学科,以不定方程作为一条主线,并将不定方程的结果与方法应用于代数数论、有限单群、组合数学等数学领域中一些重要问题的研究。本套书选择了近几十年来国内外数学竞赛中的经典试题,进行了分析讲解,供数学爱好者参考,该书是其中的上册,由南秀全、杜雯编著。全书共分六章,内容包括二元一次不定方程及其解法、多元一次不定方程、多元一次不定方程组等。
内容简介:本书共分五章,详细地介绍了三角函数与迭代函数的相关概念、研究方法,并介绍了三角函数及复数,多项式与因式分解,迭代函数与函数方程的一些函数趣题的一题多解,供读者参考。 本书可作为大、中学生及初等数学爱好者学习初等函数时的参考用书。
内容简介: 本书主要介绍著者在不定方程、代数数论、组合设计、整图和有限单群的精细刻画方面的应用的研究成果.全书共分8章:佩尔方程与广义佩尔方程,一些三次与四次不定方程,二次域与不定方程,一些高次不定方程,一些指数不定方程,不定方程对组合设计的应用,用佩尔方程的解构造整图,用不定方程的方法确定单Kn-群. 本书可作为大专院校理工科高年级学生或研究生的教材,也可作为科技工作者的参考书.
本书旨在系统介绍非光滑优化理论与方法,全书共分为九章。第1章和第2章分别介绍凸集和凸函数的概念和有关性质;第3章引入凸函数的次微分,给出凸函数的极值条件与中值定理,并介绍次微分的性质和特殊凸函数的次微分表达式:第4章介绍局部Lipschitz函数的广义梯度,给出极大值函数广义Jacobi的计算;第5章阐述拟可微函数及拟微分的定义和性质;第6章针对凸规划、Lipschitz优化、拟可微优化给出*性条件;第7章提出非光滑优化算法,包括下降方法、凸规划的次梯度法、凸规划的割平面法;第8章研究非光滑方程组及非线性互补问题;第9章介绍非光滑理论在控制论中的应用。 本书可作为应用数学、运筹学与控制论及经济管理有关专业的高年级本科生或研究生教材,也可供相关专业的科研工作者参考。
本书是一部经典图书,书中分为3部分,部分主要阐述变分法中的经典直接法及其扩张,第二部分讨论极小极大化方法,第三部分介绍变法中的新理论。适用于数学及相关专业的研究生和研究人员。
《函数论与泛函分析初步(第7版)》是世界著名数学家A.H.柯尔莫戈洛夫院士在莫斯科大学数学力学系多年讲授泛函分析教程(曾称《数学分析Ⅲ 》)的基础上编写的。《函数论与泛函分析初步(第7版)》是关于泛函分析与实变函数论的精细问题的严格的系统阐述,书中反映了作者的教育思想,体现了作者丰富的教学经验与方法。内容包括:集合论初步,度量空间与拓扑空间,赋范线性空间与线性拓扑空间,线性泛函与线性算子,测度、可测函数、积分,勒贝格不定积分、微分论,可和函数空间,三角函数傅里叶变换,线性积分方程,线性空间微分学概要以及附录的巴拿赫代数。 《函数论与泛函分析初步(第7版)》适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
MATLAB是当前流行的大型数学工具软件之一,能够完成绝大部分科学运算。《Matlab函数和实例速查手册》从实用角度出发,系统介绍MATLAB各种函数,包括:数组、矩阵与线性代数、基本数学计算函数、符号计算与符号数学工具箱、程序控制与设计、MATLAB绘图、用Simulink进行系统仿真、图形用户界面GUI、MATLAB信号处理、MATLAB与数理统计等。为便于读者对MATLAB函数的理解,书中列举了大量的函数实例,真正帮助读者学以致用。 《Matlab函数和实例速查手册》可作为MATLAB各层次使用者的参考用书,尤其适合作为相关专业的学生以及教师、广大科研工作者、工程技术人员的案头查询手册。
《准晶断裂力学的复变函数方法》主要介绍准晶弹性与断裂理论中的复变函数方法。将准晶平面弹性和断裂问题转化为偏微分方程边值问题,采用复变函数方法研究复杂缺陷及缺陷相互作用等问题,获得了应力和位移的解析解,建立了相应的断裂判据,揭示了相位子对准晶材料力学行为的影响,为准晶材料的潜在应用奠定了良好的理论基础。《准晶断裂力学的复变函数方法》发展了经典弹性理论中的Muskhelishvili方法、Lekhnitskii求解各向异性体弹性力学的复变函数方法及Stroh方法,大部分内容是作者多年来的科研成果。 《准晶断裂力学的复变函数方法》可作为应用数学专业和力学专业的高年级本科生和研究生的选修课教材,也可供相关领域工作的教师和研究人员参考使用。
《多项式和多项式不等式(英文版)》是springer数学研究生教材(gtm)第161卷,主要介绍多项式和有理函数,重点论述代数多项式和三角多项式的特性,同时也介绍了多项式几何、正交多项式、切比雪夫和马可夫系、müntz系和müntz-type型稠密性定理,以及不等式用于多项式和有理函数等理论。其中有些内容较同类图书更加全面。目次:导论和基本特性;特殊多项式;切比雪夫和笛卡儿系;稠密性问题;基本不等式;müntz空间中的不等式;有理函数空间中的不等式。 读者对象:数学及相关专业研究生和科研人员。
偏微分方程是近处来发展迅速的一门科学,它在数学与物理的很多分支领域有着重要的应用。本书是一部优秀的教科书,其中囊括了偏微分方程其本而重要的内容,如一维波动方程、热传导方程、半平面上的椭圆方程和Scurodinger方程描述模型,都是大学阶段相关专业必学的内容。此外本书还包含类型甚广的习题,部分习题配有答案以供参考。
本书系统论述了函数方程与微分方程解析解的存在性问题,书中既有关于不含偏差变元函数方程与微分方程解析解存在性的经典工作的回顾,又包括近年来有关迭代函数方程与迭代微分方程解析解的许多*成果。本书内容翔实、深入浅出,是一本系统涉猎方程解析解的参考书。 本书可供大学数学系高年级学生、研究生、教师及其他感兴趣的数学工作者阅读参考。
完全非线性椭圆方程(影印版)