本书涵盖非线性规划的主要内容,包括无约束优化、凸优化、拉格朗日乘子理论和算法、对偶理论及方法等,包含了大量的实际应用案例. 本书从无约束优化问题入手,通过直观分析和严格证明给出了无约束优化问题的*性条件,并讨论了梯度法、牛顿法、共轭方向法等基本实用算法. 进而本书将无约束优化问题的*性条件和算法推广到具有凸集约束的优化问题中,进一步讨论了处理约束问题的可行方向法、条件梯度法、梯度投影法、双度量投影法、近似算法、流形次优化方法、坐标块下降法等. 拉格朗日乘子理论和算法是非线性规划的核心内容之一,也是本书的重点.
当今科学家收集曲线样本及其他函数观测值,这本专著论述这类数据分析的思想和技巧,主要内容包括经典的线性回归方法、主成分分析、线性建模、典型相关分析及特殊的泛函技巧,如曲线注册和主微分分析。 本书始终利用来源于实际应用的数据,介绍方法的动机并举例论证,特别通过讨论数据生成过程的光滑性,说明如何通过泛函方法来发现数据的新特点;这些数据主要来源于增长分析、气象学、生物力学、马类科学、经济学及医学等领域的应用。本书论述新颖的统计技术,同时使其中的数学论证能被大多数人所理解。 本书许多内容都基于作者自己的工作,某些内容是首次出版。本书适合学生、应用数据分析学者及科研人员阅读,对统计学及其他广阔领域的研究也颇有价值。 本书作者Jim Ramsay是McGill大学的心理学教授,加拿大统计学会主席,多元分析等诸多
本书是关于Cauchy-Riemann方程的L2理论及其在多复变和复几何中应用的专著。全书共9章。第1章主要介绍泛函分析和Sobolev空间的一些预备知识。第2章从经典的irichlet原理入手引出平面区域上的H.rmander估计。第3章主要介绍一般拟凸域上的H.rmander估计,着重指出与一维情形的本质区别。第4章主要介绍H.rmander估计在构造全纯函数以及在研究多次调和函数奇性中的应用。第5章主要介绍H.rmander估计的一些变形。第6章主要介绍拟凸域上的Ohsawa-Takegoshi延拓定理及其在研究多次调和函数奇性中的应用。第7章主要介绍 K.hler流形和Hermitian线丛的基本知识, 以及全纯线丛的奇异Hermitian度量的光滑逼近。第8章主要介绍完备K.hler流形上相应于全纯线丛的奇异 Hermitian度量的L2估计。第9章主要介绍完备K.hler流形上的L2延拓定理及其主要应用,即萧荫堂的多亏格形变不变性定理的证明。
本书是在云南财经大学多次使用的微分方程讲义的基础上整理而成的。本书内容包括微分方程模型,常微分方程的基本概念,初等积分法,一阶常微分方程组,高阶线性常微分方程,偏微分方程的概念,线性偏微分方程的Adomian分解法,特征线法、达朗贝尔公式和分离变量法,布莱克-斯科尔斯方程,非线性偏微分方程的Adomian分解法,变分迭代法简介等。
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。《反应扩散方程引论 (第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解《反应扩散方程引论 (第2版)》的内容。
本书共7章,研究在复平面上或在以原点为顶点的角域上亚纯的函数的值分布,即通过某些值点来刻画亚纯函数。前两章研究各类特征函数及这样的实函数的性质。第3、4章放在新引入的奇异方向——T方向,包括存在性、分布,与其他方向的关系上,T方向与分布值和亏值总数的关系。射线分布值确定亚纯函数的增长性的问题在第5章详细研究。第6章研究亚纯函数对应的Riemann曲面,逆函数的奇异性及其与不动点的关系。后一章介绍具有重要地位的ENevanlinna猜想的Eremenko应用位势论的证明。
本书简明、详细地介绍勒贝格测度和Rn上的积分。本书的基本目的有四个,介绍勒贝格积分;从一开始引入n维空间;彻底介绍傅里叶积分;深入讲述实分析。贯穿全书的大量练习可以增强读者对知识的理解。目次:Rn导论;Rn勒贝格测度;勒贝格积分的不变性;一些有趣的集合;集合代数和可测函数;积分;Rn勒贝格积分;Rn的Fubini定理;Gamma函数;Lp空间;抽象测度的乘积;卷积;Rn+上的傅里叶变换;单变量傅里叶积分;微分;R上函数的微分。 读者对象:本书适用于数学专业的学生、老师和相关的科研人员。
内容简介: 本书为《不定方程及其应用》的中册.详细介绍了非线性不定方程(组)及其解法,其中包括因式分解法、配方法、奇偶分析法、判别式法等,还包括利用完全平方数的性质、二项式定理、费马小定理求解非线性不定方程(组).内容详细,叙述全面. 本书适合高等院校理工科师生及数学爱好者参考阅读
本书叙述了若干数学分支的某些简单而基本的内容。想法比较深入,有一定的启发性,不作复杂的推广,可作为学习和研究的引导。文中绝大部分都是从物理模型中抽象出来的。
《函数论》章着重叙述了二重极限的交换问题.第二章至第九章为复变函数理论,内容包括:解析函数、围道积分、残数、零点理论、解析延拓、*模定理、保角映射、具有有限收敛半径的幂级数、整函数、迪利克雷级数等.第十章至第十三章为单元实变函数论,它总结了近代分析学工作者所必须具备的数学工具,如测度论、勒贝格积分与微分理论等,第十三章讨论傅里叶级数理论。
本书深入浅出地引入多项式理想的Grobner基理论,给出Grobner基(特别是Grobner基的消元原理)在多元多项式方程(组)的求解、多项式理想结构性质、仿射代数结构性质、代数几何、域的代数扩张、整数优化以及图论等方面的一些基本应用,着力于引导读者认识多项式理想的Grobner基理论在代数结构+序结构+算法这个交叉领域平台上得以成功发展和有效应用的数学原理。
《偏微分方程理论与方法》(作者马天)是一部关于偏微分方程理论与方法的专著,本专著共有六章,章系统地介绍了经典的线性偏微分理论,第二章较详细地介绍了泛函分析的拓扑度理论,变分原理,线性算子半群理论及Banach空间上的动力系统理论,后四章主要是作者的工作,它们包括非线性椭圆及完全非线性椭圆边值问题存在性与正则性;退化椭圆及非负特征形式方程边值问题;非线性耗散型演化方程全局存在性及正则性;双曲型波方程及量子Hamilton系统以及耗散结构演化方程动力学,本书特点是强调数学的统一性、普适性以及简单性,同时也强调方程与自然的联系。 《偏微分方程理论与方法》适合于从事数学、物理、大气海洋物理等方面的科研、教学人员及研究生,大学高年级本科生学习与参考。
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。 《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。
这本书是索伯列夫院士的名著。他是一个用广义函数与广义导数的概念,并利用泛函分析的方法,解决了许多数理方程中的问题的学者。此书共分三章:泛函分析中的特殊问题、数学物理中的变分方法、双曲型偏微分方程理论。书中对每一个概念都有所交代,所以读者只要具备实变函数、重积分、偏微分方程及变分法方面的基础知识,即可读懂本书而无困难。
本书以数学模型及计算为主线,围绕微分方程与反问题,介绍了数学建模与计算的理论、方法及应用。微分方程及反问题研究在计算科学与工程领域具有特别重要的意义,在大数据和人工智能快速发展的时代正扮演着理论创新与技术升级的核心角色且起着不可替代的作用。《BR》 本书首先介绍数学建模的理论与方法,特别是微分方程、积分方程与反问题、线性代数方程组、**化等模型,着重建模、计算与应用三方面;然后分别给出了大数据领域、图像处理与压缩感知领域中的建模与计算案例,供读者学习、研究参考。本书是新时代数学深度应用、新工科迅猛发展形势下的一本应用与计算数学书,具有交叉性、集成性、应用性特征,以激发读者活学数学、活用数学的思考与热情。