《AP微积分辅导手册》融汇众多成功案例,直击中国学生的薄弱点,解构整门考试的知识点、考点,为参加AP微积分考试的中国学生提供一套应对AP微积分(AB BC)考试的完备方案。希望考生学完本书内容,可以顺利通过考试。 《AP微积分辅导手册》一书的内容有:函数、极限和连续性、导数、微分、不定积分和定积分、积分的应用、微分方程和级数,涵盖了AP微积分AB和AP微积分BC考试大纲中要求的全部考点,并且有相关的例题演示,在理论讲解上兼顾实战性。 本书适合准备前往海外读大学的高中生,准备参加AP考试的考生学习使用,同时可用作相关培训和辅导机构的参考教材。
微积分变魔术:一团面积变一条高,俗话“油饼变油条”,行话“二维变一维”。秘密含在一张表之中:一张画像加两行证明,一行决定、二行证毕。
本书注重常微分方程理论方法的同时,也注重常微分方程的工程实际应用。旨在提高学生发现问题和解决问题的能力,通过理论和实践的反复循环,实现螺旋式上升。 本书共七章。第一章简要介绍了工程问题的常微分方程建模,微分方程和动力系统的基本概念。第二章阐述了常微分方程的初等积分法,包括一些经典的一阶微分方程和特殊的高阶微分方程的解法。第三章给出了常微分方程的基本定理,特别介绍线性常微分方程的一些基本概念和基础理论。第四章和第五章分别讲述了线性常微分方程和线性常微分方程组,包括基本概念、求解方法及工程应用。第六章主要介绍了非线性微分方程的定性分析,包括奇点的稳定性、中心流形定理、分岔等。第七章阐述了常微分方程的数值解法,主要介绍了欧拉法、改进的欧拉法和龙格库塔方法,结合Matlab和Maple软件实现微
本书为微积分入门科普读物,书中以微积分的“思考方法”为核心,以生活例子通俗讲解了微积分的基本原理、公式推导以及实际应用意义,解答了微积分初学者遭遇的常见困惑。本书讲解循序渐进、生动亲切,没有烦琐计算、干涩理论,是一本只需“轻松阅读”便可以理解微积分原理的入门书。
《微积分教程(上 第2版)/高等学校“十三五”重点规划工科数学系列丛书》依据新的“工科类本科数学基础课程教学基本要求”,吸收国内外同类教材中的优点,并结合多年教学中积累的经验,注意教学过程中发现的问题,经由应用数学系多位教师的共同研究和推敲编写而成。 本《微积分教程》分上、下两册。上册主要内容有:函数与极限,导数与微分,中值定理及导数的应用,不定积分,定积分及定积分的应用;下册主要内容有:多元函数微分学,重积分,曲线积分与曲面积分,无穷级数及常微分方程。《微积分教程(上 第2版)/高等学校“十三五”重点规划工科数学系列丛书》思路清晰、语言精练、讲解透彻,叙述详尽、例题丰富,内容适应面广,富有弹性,可作为高等院校工科本科生“微积分”课程的教材或教学参考书。
本书介绍椭圆方程的基本性质和方法。作者用自己独特的方法把 De Giorgi-Nash-Moser 迭代、Morrey 估计、逆 Holder 不等式和椭圆组的能量的 blow up 分析系统有机地结合起来, 并且特别强调正则性方法的研究。 内容全面、自封 证明简洁、篇幅适中 在处理正则性理论方面非常具有特色
本书寻找最少且自封(不依赖于未证明的结果)的微积分,即最少的概念:微分和积分(实是一个概念,后者乃前者之和);最少的定理:基本定理和泰勒定理(实是一个定理,后者乃前者的连用);最简的解释(实是两张图)、最短的证明(实是两行算术,没有更多)、最少的数学符号(阿基米德的传统,多用文字和图形).这些概念、定理和证明只用到两张图、两行算术,不用实数,适合于文科;对理科还要加上最少的(即一个)微分方程,这时才用到实数. 简言之,最少的微积分=两个(或一个)概念 两个(或一个)定理十一个方程.归根结底,就是两张图、两行算术,加上一点实数,没有更多。
《沉积岩岩石学》教材全面而系统地介绍了沉积岩岩石学的基础知识、基本原理及其沉积岩鉴定与研究的基本技能和方法,并尽可能反映了近年来沉积岩岩石学和沉积学的新进展。 《沉积岩岩石学》可作为地质学、矿产普查与勘探、石油工程和地球化学等专业的本科教学用书,也可供相关专业研究生、广大教学和科技人员参考。
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历 的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物, 是数学爱好者的佳肴。
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
本书介绍了十多位优秀的数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。本书兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
本书是教材微积分(第四版)的配套用书,旨在帮助学生自学以及方便教材教学,本书的章节安排与教材相同,内容主要包括各节的学习要点、学习疑难点、典型例题解析及教材习题的解答。
Banach空间中的常微分方程理论是近二三十年发展起来的一个新的数学分支,它把常微分方程理论和泛函分析理论结合起来,利用泛函分析方法研究Banach空间中的常微分方程。它的理论在无穷常微分方程组、临界点理论、偏微分方程、不动点定理等多方面都有广泛的应用。特别是,临界点理论中常用的最速下降流线,即以是Banach空间常微分程方程理论作基础。由于它的重要性,又比较新,故被列为我国自然科学基金重点资助的项目之一。 在我国,研究Banach空间常微分方程理论的人很少,1985年,在第五届全国非线性泛函分析会议上,作者和孙经先副教授合作了《Banach空间中的常微分方程理论》综合报告,引起了许多人的兴趣。本书显然可作为综合性大学和高等师范大学有关专业的研究生教材,也可供有关教师和科技大工作者进行科研时参考。
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书具有以下特点:广泛使用表格法,使有关内容、解题方法和技巧一目了然;从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用;用系列专题分析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。