本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书共分4个章节,具体内容包括函数、极限与连续、一元函数微分学、一元函数积分学。另外,书后还附加了数学实验(MATLAB在微积分中的简单应用)、微积分简史、微积分学常用公式和习题参考答案以供读者作为参考。该书可供各大专院校作为教材使用,也可供从事相关工作的人员作为参考用书使用。
本书是由国家自然科学基金委员会数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一。 本书是俄罗斯莫斯科大学经典数学教材之一,是微分几何教程的简明阐述,在大学数学系两个学期中讲授。内容包含:一般拓扑,非线性坐标系,光滑流形的理论,曲线论和曲面论,变换群,张量分析和黎曼几何,积分法和同调论,曲面的基本群,黎曼几何中的变分原理。叙述中用大量的例子说明并附有习题,常有补充的材料。 本书适合数学、物理及相关专业的高年级本科生、研究生、高校教师和研究人员参考使用。
微分几何讲义(修订版)
这是当今关于偏微分方程 (PDE) 的*权威教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。本书内容广泛,阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 新增非线性波动方程的一章, 超过 80 个新习题, 许多新的小节 大大扩充了参考文献。
拟微分算子理论自20世纪中叶形成以来,经过几十年的发展已成为现代分析理论的重要组成部分,并特别在偏微分方程理论及相关问题的研究中成为必不可少的工具。本书详细介绍了拟微分算子的基本理论及其在偏微分方程中的应用,为基础数学与应用数学专业的研究生、教师及相关研究人员提供了宝贵的参考。本次修订少量更新了部分章节内容并增加了后记。 本书既是这一领域的一本入门书,又介绍了该理论在偏微分方程中几个最重要方面的应用,可为读者进一步学习与研究做准备。
《微积分学教程(第1卷)(第8版)》是一部卓越的数学科学与教育著作。自*版问世50多年来,本书多次再版。至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一。并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初*后形成的现代数学分析的经典部分。本书*卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学校的数学分析与高等数学课程作为教学参考书,是数学
本书是俄罗斯科学院院士О.А.奥列尼克多年来在莫斯科大学数学力学系为大学三年级学生讲授该课程基础上的扩充。内容包括偏微分方程理论的古典与现代理论的基础部分,以及泛函分析、广义函数理论、函数空间理论方面的一些知识。作者是И.Г.彼得罗夫斯基的学生,在偏微分方程这个方向享有盛名。此书反映了莫斯科大学在这个课程上,20世纪后半叶至今的新情况,可供我国偏微分方程课教学参考。 本书可供综合大学和师范院校数学、物理、力学及相关专业的教师和学生参考,也可供工科院校应用数学系师生参考。
这是一部译自俄文的享誉世界的大型英文数学工具书。经过半个世纪的多次补充和修订,它已成为数学家、物理学家和工程技术人员常用的主流工具书。本书收集了1万2千余条从初等函数到特殊函数的积分公式、级数和公式及乘积的数学用表。本书是第8版,本版在第7版的基础上做了修订,其中对上一版的后三章内容做了调整。 目次:导论:初等函数;初等函数的不定积分;初等函数的定积分;特殊函数的不定积分;特殊函数的定积分;特殊函数;矢量场理论;积分不等式;傅里叶变换,拉普拉斯变换和梅林变换。
“无穷小分析”这一名称是由欧拉创始的,这正是数学中“分析”一支名称的起源。本书作者所在的布尔巴基学派对20世纪的法国数学教学改革作出了重要的贡献,但也出现了一些消极影响,例如倡导独立子传统数学的所谓“新数学”;也有过只重视理论。而忽略计算的倾向。本书是作者为纠正这些偏向而设置的课程编写的。在本书所讲的无穷小计算中。使用不等式要比使用等式多得多,而且可用三个词作为本书的提要:求上昇、求下界、逼近。作者希望读者通过学习本书。不是只学会一些无穷小分析中运算的机械程序,而是还懂得有关“直观”的概念。 本书包含函数与映射的逼近及渐近展开式、复查解析函数的基础、一阶与二阶线性微分方程的近似解法与稳定性以及贝寡尔函数等。书中有不少新意。并附有相当数量的优秀习题。 本书可供大学数学专业
本书这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第3卷。本卷主要论述非线性偏微分方程。其中包括经典连续统力学方程和微分几何中的方程,以及非线性扩散问题。书中论及的分析方法包括索伯列夫空间理论、hˉlder空间理论、hardy空间理论和morrey空间理论。非线性分析用的泛函空间和算子理论;非线性椭圆方程;非线性抛物方程;非线性双曲方程;不可压缩流用的欧拉方程和navier-stokes方程;爱因斯坦方程。读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。 读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
本书详细地介绍分数阶偏微分方程的数值方法.这些分数阶偏微分方程包括空间、时间、时间-空间分数阶偏微分方程,反常次扩散方程,修正的反常次扩散方程,分数阶Cable方程,也包括时间-空间分数阶偏微分方程,多项时间-空间分数阶偏微分方程和变分数阶偏微分方程,以及人类大脑组织中的反常扩散模型,非均匀介质中扩散过程的分数阶模型。所讨论的数值方法包括有限差分方法、有限元方法、谱方法、有限体积方法、无网格方法和矩阵转换技巧,详细介绍如何构造适当的数值方法,并讨论了数值方法的稳定性和收敛性,以及数值分析技巧和方法,给出了部分数值结果。同时也介绍了分数阶偏微分方程的一些数值实例,后介绍所提出的数值方法在医学工程和心脏科学中的应用。
本书力求对分数阶微分方程的差分方法作个简明介绍.全书分为6章.第1章介绍4种分数阶导数的定义,给出两类*简单的分数阶常微分方程初值问题解析解的表达式;介绍分数阶导数的几种数值逼近方法,研究它们的逼近精度,并应用于分数阶常微分方程的数值求解.这些是后面章节中分数阶偏微分方程数值解的基础.第2~6章依次论述求解时间分数阶慢扩散方程的有限差分方法、求解时间分数阶波方程的有限差分方法、求解空间分数阶偏微分方程的有限差分方法、求解一类时空分数阶微分方程的有限差分方法以及求解一类时间分布阶慢扩散方程的有限差分方法.对每一差分格式,分析其**可解性、稳定性和收敛性.
《偏微分方程.第2卷(第2版)》这是一套3卷集经典名著,版曾影印出版,广受好评。第2版新增内容312页(3卷),这是第2卷。本卷在第1卷的基础上进一步讨论线性偏微分方程中的一些高等问题,其中包括伪微分算子、自伴算子的泛函分析和wiener测度。书中还介绍了微分几何的基本概念、椭圆微分算子的谱理论、由障碍产生的波动散射理论、狄拉克算子用的指数理论、布朗运动和扩散等。 目次:伪微分算子;谱论;由障碍产生的散射;狄拉克算子和指数理论;布朗运动和位势论;-neumann问题;联络和曲率。 读者对象:偏微分方程、数学物理、微分几何、调和分析和复分析等专业的研究生科研人员。
本书是在1996年第六版《常微分方程》(德文)一书的基础上编写而成的。本书主要介绍了常微分方程的基础理论,内容包括:可积一阶微分方程,微分方程解的存在性和*性,微分方程的初极值问题,边值问题和特征值问题,稳定性与渐进稳定性理论。此外,本书还增加了在一般相关教材中很少涉及但具有一定难度的内容,并对一些复杂基本定理给出了新的证明。阅读本书须具备一定的计算代数、线性代数及泛函分析的基础知识。 目次:一阶微分方程,一些可积的例子;一阶微分方程理论;一阶系统,离阶微分方程;线性微分方程;复线性系统;边值问题与特征值问题;稳定性与渐进稳定性。
本书阐述微分方程有限差分数值求解方法. 首先介绍常微分方程初边值问题的求解方法, 以及收敛性、相容性和稳定性分析; 其次介绍偏微分方程(包括椭圆型方程、抛物型方程和双曲型方程)的有限差分求解方法和一些重要的差分格式, 以及相应的理论分析; 最后介绍有限差分方法在波动方程波场模拟中的应用; 在附录中给出了一些常用公式. 本书结合教学和科研的特点, 不但具有理论的严谨性, 还有较多的例题和数值算例, 以促进理解和应用.
本书内容涉及调和分析的经典理论,特别是与偏微分方程研究密切相关的方法与技巧。例如:C-Z奇异积分算子、Littlewood-Paley理论、抽象插值方法、可微函数空间的调和分析刻画等。同时着力于用调和分析的方法研究偏微分方程。为此,详细讨论了振荡积分理论、Fourier限制型估计及相应的Strichartz估计、Keel-Tao端点时空估计等。借助于调和分析的现代理论与方法,研究了波动及色散方程的Cauchy问题的适定性、低正则性与散射性理论。第二版对一些内容进行了增删,诸如:增加了发展型方程的调和分析方法的研究背景、非线性Klein-Gordon方程的低正则性,删除了波动方程的散射性。重新改写了一些章节,增加了许多注记,以反映这一领域的最新进展。本书的特色是将调和分析的现代方法与偏微分方程研究有机的结合起来,可以帮助读者很快进入这一领域研究的前沿。
常微分算子是在Fourier方法、Sturm-Liouville理论与Hilbert空间无界算子理论的基础上发展起来的一门数学分支,是近代量子力学、数学物理及工程技术的重要数学工具之一.本书系统地讲述了:Hilbert空间线性算子的一般知识和由微分算式生成的算子的基本概念;常型自伴微分算子的谱分解,即经典的Sturm-Liouville理论;对称算子的亏指数与自伴扩张问题;奇型微分算子的谱分解,即Weyl-Titchmarsh理论;微分算子亏指数理论的若干发展概况等.
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。