希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
笛卡尔(1596-1690)创立的解析几何的诞生则被称为数学史上的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡尔的《几何学》共分三卷,一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和"超立体"的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种"普遍"的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
《组合数学》(原书第4版)侧重于组合数学的概念和思想,包括鸽巢原理、计数技术、排列组合、Polya计数法、二项式系数、容斥原理、生成函数和递推关系以及组合结构(匹配、实验设计、图)等,深入浅出地表达了作者对该领域全面和深刻的理解,介绍了历史上源于数学游戏和娱乐的大量实例,其中对Polya计数、Burnside定理等的处理使得不熟悉群论的学生也能够读懂。除包含第3版中的内容外,本版又进行了更新,增加了莫比乌斯反演(作为容斥原理的推广)、格路径、Schroder数等内容。此外,各章均包含大量练习题,并在书末给出了参考答案与提示。
亚尼齐编著的《拓扑学》内容介绍:This volume covers appromately the amount ofpoint-set topology that a student who does not intend to specializein the field should nevertheless know.This is not a whole lot, andin condensed form would occupy perhaps only a small booklet. Ouraim, however, was not economy of words, but a lively presentationof the ideas involved, an appeal to intuition in both the immediateand the higher meanings.
本书是本人2013年编写的《拓扑学》(机械工业出版社)教材的配套读物,给出了书中500多道习题的详细解答。具体内容有下面这些方面的习题:拓扑空间的基本概念,连续映射,拓扑基与积空间,分离性公理与可数性
本书是高等教育出版社出版的吕林根、张紫霞,孙存金编《解析几何》(1988年版)配套的学习指导书,按照教材体系编排,每章包括:内容概述、学习要求、学习辅导、补充例题、自我测验题五个部分,书末给出自我测验题的解答。 本书可作为中学教师、自学读者、函授学员学习解析几何的辅导书。
笛卡尔创立的解析几何的诞生则被称为数学目前的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书
本书是本人2013年编写的《拓扑学》(机械工业出版社)教材的配套读物,给出了书中500多道习题的详细解答。具体内容有下面这些方面的习题:拓扑空间的基本概念,连续映射,拓扑基与积空间,分离性公理与可数性
刘培杰数学工作室编著的《面积原理——从常庚哲命的一道CMO试题的积分解法谈起》是从常庚哲命的一道CMO试题的积分解法谈起,进而介绍了面积原理问题。本书共有9章:第1章引言,第2章历史与经典结果,第3章
刘培杰数学工作室编著的《面积原理——从常庚哲命的一道CMO试题的积分解法谈起》是从常庚哲命的一道CMO试题的积分解法谈起,进而介绍了面积原理问题。本书共有9章:第1章引言,第2章历史与经典结果,第3章
笛卡尔创立的解析几何的诞生则被称为数学目前的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡
明末清初西方传教士航海东来,不仅给我国传入了欧氏几何知识,而且也给我国带来了许多西方早期画法几何知识。这些知识对于当时我国的数学、天文学、地理学和绘画等学科都产生了十分积极的影响。杨泽忠编著的《明末清初西方画法几何在中国的传播》在前人研究的基础上对这个时期西方早期画法几何知识的东来及其在我国的传播进行了较为深入的探讨,着重分析了利玛窦、汤若望、郎世宁、熊三拔、徐光启、李之藻、梅文鼎和年希尧等人的相关工作,阐述了他们各自的突出贡献,用现代数学的方法对他们传入和传播的内容进行了具体分析,肯定了他们的成绩,也指出了其中的缺陷。从而厘清了这个时期西方画法几何传人我国的时间、方式、路线、内容和内容来源,总结和论述了西方画法几何知识传人我国并在我国顺利传播的原因、特点和影响。另外,在