许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
德国数学家尤尔根?约斯特的著作Bernhard Riemann Ueber die Hypothesen,welche der Geometrie zu Grunde liegen, 以一个微分几何学家的独特视角, 将黎曼几何学思想置于更为宽广的背景??哲学、物理学以及几何学??加以考察, 并将黎曼的推理置于他的追随者基于他的开创性思想所获得的更普遍和更系统的视角进行研究. 作者遵循西方数学史家所主张的数学史研究方法论之“接受史”研究范式, 考察了从亚里士多德到牛顿的物理学中的空间观念、康德的空间哲学, 以及非欧几何学发展的历史, 同时还用现代数学的观点对黎曼关于几何学基础的假设文本中所涉及的现代数学概念予以阐释, 探究黎曼几何学与现代数学和理论物理的深刻联系.
本书中册包含4章(第11~14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3+1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。
本书与初中、高中数学竞赛大纲和新编数学教材同步配套,相应地分为若干章节,每个章节都精选典型例题,进行详细讲解,还编写了课外习题,供学生练习,便于学习者了解数学竞赛中平面几何内容的各项要求.本书选材于全国各地历年中考压轴几何题,各届初 中、高中数学竞赛几何题以及经典的几何问题,从多家数学网站、论坛、贴吧、数学群、公众号等数万道几何题中,经过精选、分析、分类、归纳、总结,形成具有集系统性数理思维训练 和实战演练于一体的培优教程 本书适用于参加初中、高中数学竞赛的学生学习和训练,对参加大学自主招生、高考 的学生及初中、高中、大学数学教师也有一定的参考价值
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书.
内容简介:本书分上、下篇,以66个专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。全书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师,以及数学奥林匹克教练员使用,也可作为高等师范院校数学教育专业以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书。
内容简介:本书从14个方面介绍了各类范例200余道一题多证(解).主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧. 本书内容适合初高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的 竞赛数学 或 初等数学研究 等课程的数学参考书.
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
本书提供了俄罗斯在中学,其中包括在专门化的学校学习的几乎所有平面几何的问题及各题的提示,本书适用于大学、中学师生和数学奥林匹克选手及教练员。
本书分上下两篇,上篇通俗地阐述了作者所开创的几何解题的“消点 法”,用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假 ,命题成立时还能够产生人容易检验和理解的证明,即可读证明,书中先 引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理 ,接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方 法,此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法 以及复数法的基础上也能建立消点法,下篇则对几何公理体系提出了新的 见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出 一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公 理体系的等价性。 本书可供中学数学教师、师范院校数学教师、数学爱好者、数学奥林 匹克工作者和参赛
《新世纪高等学校教材·数学教育主干课程系列教材:直观拓扑(第3版)》第二版与版内容相同,第三版增加了以下内容:章第2节中,关于连续性的应用,增加了几个有趣的例子。 第2章中增加了一节:欧拉公式的一个实际应用,介绍有关平面布线的问题,即如何判断一个图是否可以画在平面上而使图中各线段除端点外不相交,这个问题在印刷线路的设计中有实际意义, 第3章中增加了一节:一笔画的一个实际应用,介绍有关邮递员的最短路线问题。 第4章中,在介绍约当曲线定理的节,增加了介绍约当曲线在其上不成立的曲面--环面,在介绍布劳威尔不动点定理的第2节中,增加了关于1维布劳威尔不动点定理的直观讨论;在这一节,增加了介绍1维布劳威尔不动点定理的一个应用--关于求解市场均衡点问题。 第5章节中,增加了一些关于莫比乌斯带的奇趣
这是基于一位的数学家和数学教育家的讲课,并由另一位数学家精心写作而成的一部的著作!每位数学专业的学生都应该拥有它。 《直观几何》的目的是从直观、直觉的方面,呈现几何学之貌,“几何”在此书中得到非常广泛的解释,除了平面曲线的解析几何,曲线和曲面的微分几何之类的一般几何外,它还包括了共形映射、曲面、数的几何及其在数论中令人惊奇的应用、位形空间之几何、多面体与曲面的拓扑等。 D.希尔伯特,S.康福森专著的《直观几何》每一章都是从非常简单和基本的概念开始;然后向读者们演示,如何把困难的结果和理论归结为简单的东西,以及数学的不同部分是如何相互关联的。 本书上册附加了季理真教授专为本书所写的图书和作者介绍的精彩序言。下册还收录了由亚历山德罗夫写的关于拓扑学的附录,作为对《直观几何》关于拓扑学系统
小说家兼数学家、历史学家和哲学家M吉卡(Matila Ghyka)写的这本《数学概览:生命·艺术·几何》,试图按照古典的美学观点——特别是柏拉图的观点,来解释并表达隐藏在自然之美、生物之美以及人类艺术作品之美背后的数学原理——或更准确地说,几何原理。 《数学概览:生命#艺术#几何》只涉及非常基础的数学知识,内含多幅插图,还有不少包含真知灼见或具有哲学意义的评述。作者通过分析我们熟悉的事物,给出关于几何学、人体和生物组织、建筑、美术作品中对称性和比例等知识相当全面的介绍。特别有价值的是关于古典建筑中对称性应用的讨论。 阅读《数学概览:生命#艺术#几何》不仅令人感到愉快,而且从中可以学到许多知识。它在古典艺术、建筑和生物学的背景之下,以对称性(或美)为关键概念,熟练地编织出一张综合历史、哲学、数
《安全生产隐患排查治理工作指南》一书,正是应当前隐患治理工作的现实需要而编写的。该书以党和国家关于安全生产的方针、政策、法规为指导,以国家安监总局和相关部委下发的隐患治理实施意见为依据,同时结合各行业规程、标准等技术规范,以企业如何贯彻执行国办通知及安监总局和相关部委下发的隐患治理实施意见为主要内容,对隐患治理的主体责任及相关规定、危险源普查与重大危险源辨识技术、企业生产过程中各类事故隐患的排查治理措施、公共场所的隐患排查治理措施以及隐患排查治理的行政与违法行为责任追究等进行了具体的阐述,增强了该书的指导性和实用性。
根据高等院校应用型本科学生的培养要求,《理论力学》时特别注重内容的编排和素材的选取,着眼于理论的应用与工程实际问题的解决,尽量减少理论的推导、避开就题论题。《理论力学》共14章,按照传统的静力学、运动学、动力学和分析力学基础进行编排。《理论力学》中的例题、思考题和习题精选工程和生活实际问题,突出实用性和趣味性;在内容的选取上,较好地处理了“理论力学课程”与“大学物理”课程的衔接问题,做到既有联系,又不重复;在内容的编排上,既突出应用型培养目标的需求,又不失完整性和连续性。全书理论体系清晰、层次分明、重点突出、难点分散。在例题的分析中,既阐明了解题的思路和步骤,又有较好的教学适用性。 《理论力学》可作为高等院校工科类理论力学课程的教材和教学参考书,也可供有关工程技术人员参考。
《拓扑线性空间与算子谱理论》是为具有初步泛函分析知识的读者提供的深入一步学习的泛函分析教材或参考书。内容由拓扑线性空间一般理论与算子谱理论两部分组成。全书共包含六章和两个附录,前面三章叙述拓扑线性空间的一般理论,后面三章是关于banach代数与算子谱理论的,之后介绍了谱理论在算子半群理论与遍历理论中的一些应用。 《拓扑线性空间与算子谱理论》在讲解上述理论知识的同时还选取相当数量的实际例子加以阐释,以期加强基本理论和实际应用之间的相互联系。
《原本》成书于公元前三百年左右,距离两千三百年,《原本》的作者是亚历山德拉的欧基里得(Euclid ofAlexandria),他的生卒年根据推测大概是公元前330~260年,正是马其顿英主亚历山大开始发展势力,开创希腊化文化的初期。《原本》是一本数学著作,章节安排有着严谨的结构,全书由定义、公设、设准、命题(定理)、证明,以及符号和图像所构成,全书共十三卷。 《原本》其实是欧基里得将古希腊数学集大成的著作,包括了希腊科学数学家:泰利斯、毕达哥拉斯、希波克拉提斯等人的成果。导读者翁秉仁教授认为《原本》之所以是经典,是因为欧基里得采用了非常特殊的编纂法,就是推理的方法或逻辑。欧基里得的原创性不是表现四百多个命题的叙述,因为许多命