许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
本书由数学建模概述、微分方程建模方法及应用、差分方程建模方法及应用等内容组成,系统介绍数学建模的理论及应用,作者将数学建模的过程归结为五个步骤(即“五步方法”),并贯穿全书各类问题的分析和讨论中,本书阐述了如何使用数学模型来解决实际问题,提出了在组建数学模型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范,而且配备了大量的习题。立足初等数学基础,兼顾高等数学知识的过渡和有效拓展,深入探讨典型数学模型的基本原理、建模思想与建模流程,每一种方法都有相应的应用案例,本书兼具理论性与实用性,文字通俗易懂、深入浅出,可供数学建模应用研究者及感兴趣者阅读使用。
本书基于《微分几何》,北京大学出版社,2006版修订而成。本书是数学专业本科教材,内容包括:曲线论,曲面的基本形式,曲面的第二基本形式,曲面的基本方程和基本定理,曲面的内蕴微分几何,以及活动标架和外微分法。这次修订版着重在整体的曲面概念以及微分流形的初步概念方面加强阐述,以适应当前教学的需要,另外还要加强例题和习题的配置。本次修订版对本书做了一次全面的修正,并且添加了第六章的三节内容,所添加的内容主要是引进大范围的抽象曲面(2维黎曼流形)的概念,并且系统地在抽象曲面上展开它的几何学,也就是独立地、以内在的方式讲述内蕴微分几何。
《线性代数》根据理工类和经济管理类本科数学基础课程教学基本要求,参考《全国硕士研究生入学统一考试数学考试大纲》,结合编者多年的教学实践编写而成。全书共分六章,主要内容包括线性方程组与矩阵、行列式、向量组的线性相关性、特征值与特征向量、二次型、线性空间与线性变换。其中至五章(除小字内容外)符合教学基本要求,教学时数约34学时,小字内容可供学时较多的高校选讲或读者选读;第六章可供对数学要求较高的专业选用。每章配有小结与习题,习题分为两部分,部分是基本题(包括填空题、选择题、计算题和简单证明题),第二部分是提高题,书后给出了基本题的参考答案及提高题的详细解答。附录中收集了2008年至2013年的考研真题,并给出详细解答。
分形几何的概念是由B.Mandelbrot于1975年首先提出的,十几年来,它已经迅速发展成为一门新兴的数学分支。这是一个研究和处理自然与工程中不规则图形的强有力的理论工具,它的应用几乎涉及自然科学的各个领域,甚至于社会科学。并且实际上正起着把现代科学各个领域连结起来的作用。人们把它与耗散结构及混沌理论共称为20世纪70年代中期科学上的重要发现。 《分形几何:数学基础及其应用》是一本1990年才在英国初版的介绍分形理论与应用的专著,部分叙述分形几何的基本理论,主要是分维的定义与计算技巧。第二部分,广泛地介绍了分形理论在数学与物理上的各方面的应用。 《分形几何:数学基础及其应用》集分形理论与应用于一体,处理方法简单明了,有很强的可读性。译著中保留了原书的百幅左右的精美分形图像,是一本很好的研究生教材,
变分法是研究泛函极值问题的一门科学,是古典数学的一个分支。 《变分法及其应用:物理、力学、工程中的经典建模》共分六章。章介绍泛函分析的一些基本概念和符号;第二章、第三章提出四个古典的变分模型,讨论泛函取得极值的必要条件、各种形式的欧拉方程、条件变分、一阶变分的一般形式、自然边界条件、变动边界与横截条件;第四章介绍物理学、力学中的变分原理,二次泛函极小与特征值的关系,正定算子的极小泛函;第五章介绍变分学中的直接方法;第六章介绍极值的充分条件。 《变分法及其应用:物理、力学、工程中的经典建模》可作为应用数学、应用物理及应用力学等本科生、研究生的教材,也可作为科技工作者的参考书。
全书共分6章,包括三角形五心的概念和性质,三角形五心的坐标表示、向量形式及应用,三角形五心间的距离,圆内接四边形中三角形的五心性质及应用,三角形五心性质的综合应用等内容,每章节后配有习题,书后附有习题参考答案。本书适合于初、高中学生,初、高中数学竞赛选手及教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的“竞赛数学”课座教材及、省级骨干教师培训班参考使用。
“数学文化小丛书”是“十一五”国家重点图书出版规划项目之一,该丛书精选对人类文明发展起过重要作用、在深化人类对世界的认识或推动人类对世界的改造方面有某种里程碑意义的主题,深入浅出地介绍数学文化的丰富内涵、数学发展史中的一些重要篇章以及一些数学家的历史功绩和品质等内容,适于包括中学生在内的读者阅读。 本书为“数学文化小丛书”之《并不神秘的非欧几何》。
《趣味数学300题》是根据作者多年的教学工作经验的基础上编写而成的。这本《趣味数学300题》与同类书的不同之处是:在解题思路上的分析比较多,对题目答案的分分比较详细,重视解题的过程。
《三维流形拓扑学讲义》主要介绍低维拓扑和Casson理论,当然也不失适时地引入最近研究进展和课题。包括许多经典材料,如Heegaard分裂、Dehn手术、扭结和连接不变量。从Kirby微积分开始,进一步讲述Rohlin定理,直到Casson不变量及其应用,并以简短介绍蕞新进展作为结束。熟悉基础代数和微分拓扑,包括基础群、基本同调理论、横截性和流形上的庞加莱对偶性的数学和理论物理专业的读者均可阅读。
化学是一门与人类生活有着密切关系的基础学科。全书共分10篇,分别为能源,粮食、环境、安全、高分子材料、表面活性剂、五彩缤纷的世界、健康、食品安全、诺贝尔及诺贝尔奖。主要讲述化学在人类生存发展中的重要地位,以及所做出的贡献。《复旦光华青少年文库·科学素养系列:化学就在你身旁》具有思想性和科学性,更具可读性和启迪性,是一本适合青少年人阅读的读物。
《一般折线几何学》详细介绍了一般折线几何学的基础内容及性质,同时介绍了一般折线几何学在生活中的应用。《一般折线几何学》适合数学爱好者参考研读。《一般折线几何学》内容包括绪论;平面折线的基本性质;基本概念及初步分类;基本概念;初步分类;多边形;平面闭折线基本定理;边的折性:单折边与双折边;三种边的分布规律:折线基本定理;凸多边形基本概念;相交指数定理;闭折线的顶角和;折线复杂性的三项指标等等。
《2010年世界发展报告:发展与气候变化》作为世界发展报告系列的第32份报告,旨在结合世界银行的经验与研究,推进对气候变化下发展的更深的认识。气候变化是人类在新世纪面临的最为复杂的挑战之一。没有哪一个国家能独善其身,也没有哪一个国家能独立应对,它涉及敏感的政治决策、艰巨的技术变革和深远的全球影响。气候变化已经危害到改善生活水平和实现联合国千年发展目标方面的努力,发展中国家受到气候变化的负面影响,因此,达成一个承认发展中国家需求的公平高效的气候协定至关重要。金融危机可能会在短期到中期造成困难和减缓经济增长,其持续时间很少超过两三年,气候变暖的威胁远比金融危机要严重得多。因此,世界各国(地区)必须立即行动、共同行动并且不断创新,以应对气候变化的挑战。
本书分上下两篇,上篇通俗地阐述了作者所开创的几何解题的“消点 法”,用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假 ,命题成立时还能够产生人容易检验和理解的证明,即可读证明,书中先 引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理 ,接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方 法,此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法 以及复数法的基础上也能建立消点法,下篇则对几何公理体系提出了新的 见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出 一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公 理体系的等价性。 本书可供中学数学教师、师范院校数学教师、数学爱好者、数学奥林 匹克工作者和参赛者以及
笛卡尔(1596-1690)创立的解析几何的诞生则被称为数学的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡尔的《几何学》共分三卷,一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"超立体\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\"普遍\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
《平面解析几何方法与研究(第2卷)》一书全面系统地介绍了欧氏平面解析几何的有关重要内容,是作者参考了多种有关论著并结合自己的教学经验整理而成的。《平面解析几何方法与研究(第2卷)》对进一步理解平面解析几何基本内容、拓宽知识面都有很大帮助。对于书中的难点和一般解析几何书中不常见到的内容作者都做了严谨而详细地论述,并配备了较多例题。每个例题都具有典型意义,是对正文的重要补充,这些例题对理解重要概念、掌握解析几何方法有重要作用。因此,《平面解析几何方法与研究(第2卷)》是一本有价值的数学教学参考书。