本书由美国康奈尔大学Rick Durrett教授撰写,书中反映了过去半个多世纪概率论与随机过程的巨大发展,体现了概率论与其他学科深刻联系以及在工程、经济、金融等方面的应用,继承了美国在概率论教育实践中所积累的经验。本书选材恰当,编排合理,难度适中,兼顾理论与应用,契合当今研究生教学的实际情况,被美国多所高校选为研究生教材。 本书内容包括大数定律、中心极限定理、随机游动、鞅论、马氏链、遍历定理、布朗运动等。附录部分收录了所需的测度论知识。此书宜为概率统计专业研究生教材。对于学过概率论的学者而言,这也不失为一本出色的参考书。
《北京大学数学丛书·矩阵计算的理论与方法》系统阐述了矩阵计算这门学科的基础理论、基本方法和近十几年来发展成熟并得到了广泛应用的新成果。内容包括:矩阵知识的复习和补充,矩阵计算概论;求解线性方程组的直接法和迭代法,线性二乘问题,共轭梯度法;求解特征值问题的QR方法和同伦方法;Lanczos方法以及求解Jacobi矩阵特征值反问题的正交约化方法等。《北京大学数学丛书·矩阵计算的理论与方法》取材上,既注重基础理论的严谨性、方法的实用性,又保持了内容的新颖性,反映了该学科的进展。《北京大学数学丛书·矩阵计算的理论与方法》内容自封,各章之间相对独立,可适用于不同读者的需要。
《有限元方法卷:基本原理(第5版)》为有限元方法系列专著的卷——基本原理,涵盖了有限元分析的一些基础领域,同时还涉足有限元分析的前沿内容。本卷共20章,内容广泛,既强调有限元的数学力学原理,又结合工程实际背景。该书的版完成于1967年,到现在已出版第5版,历时40余年,成为有限元领域的经典著作,已有几代从事计算力学的学者从该书中受益。本书可作为高年级本科生和研究生的课程学习参考书,也是从事有限元研究的科研人员和工程技术人员的重要学习文献。
《时间序列分析:单变量和多变量方法(第2版)》不仅对单变量与多变量时间序列的时域和频域分析提供了一个全面介绍,而且在书中包含了许多单变量和多变量时问序列模型的新进展,如逆自相关函数、扩展样本自相关函数、干预分析及干预探测、向量自回归移动平均模型、偏滞后自相关矩阵函数、局部过程、状态空间模型、卡尔曼滤波、非季节和季节模型的单位根检验等许多内容。《时间序列分析:单变量和多变量方法(第2版)》结合大量的应用实例说明时间序列分析方法的应用,极大地方便了读者对这些方法的学习和理解。
本书是由一位数学大师倾注了极大的热情和精力,为有志于认真、系统地学习微积分的学生撰写的一本教材。书中内容涉及多元微积分,包括:多元函数,多元微分、多元积分的法则,以及曲线和曲面。作者首先使用积分记号,从Arzelà定理导出微积分定理,然后详细介绍定义在矩形上的多元函数的积分和一般情况下的多元函数的积分,最后导出曲线长度公式和曲面面积公式。 本书逻辑严密,采用的大量图示增强了表述的直观性,可作为高等院校本科和专科学生学习微积分的教材或参考书。
本书系统讲述统计中多元分布的基本理论和常用的多元数据分析方法,多元分布理论包括Wishart分布、T2分布、A分布、多元Beta分布、多元正态的参数估计和假设检验及一般多元分布的参数估计和假设检验理论,多元数据分析方法包括多元线性回归模型、判别分析、主成分分析、因子分析、相应分析、聚类分析、典型相关分析和多维标度法,既强调作为一个学科分支的理论系统性,对一些基本定理给出了必要而简明的数学推导,又注重数据分析方法的多样性,对各方法从背景、数学工具的使用、计算步骤到应用技巧及各种方法之间的联系,都有较详细的阐述,包括近期的一些新发展,书中给出一些有启发性的实例和习题,书末附录给出一些代数补充知识。 本书可作为高等院校数学系、数理统计或统计系、计量经济系、生物统计系等有关学科专业的高年级本科生、
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
同调代数是本世纪四十年代发展起来的,现在已成为代数学中的重要方向之一,同调代数是代数学中研究群、环、模理论的重要工具,也是研究数学中其他分支如:代数几何学、拓扑学、微分几何、函数论、代数数论的有效工具。《现代数学基础丛书·典藏版26:同调代数》阐述同调代数的基本理论与方法,包括范畴、模、同调、同调函子与一些环、谱序列等五章。另外还有两个附录,阐述正则局部环的理论与Serre问题。《现代数学基础丛书·典藏版26:同调代数》论证严格,起点不太高,但较深入,可供学过近世代数的大学生、研究生及数学工作者参考。
在各界名人中,数学家是最不为人了解的,其传记恐怕也索然无味。的确,数学家的活动主要在他头脑中进行,而他的劳动成果往往只有极少数人才能理解。然而,保罗·哈尔莫斯的这本数学自传,却大有可读之处。 《我要做数学家》至少提到了一两百位数学家,有的鼎鼎大名(如冯·诺伊曼),书中不仅讲述他们的故事,还收有他们的照片,使读者对当代数学家有全面的感性认识:同时,这是一本真正的20世纪数学社会史,书中谈到陈省身等大数学家的工资状况及教授之间的工资差别,谈到怎样办好的大学,怎样营造宽松自由的学术环境作者还讲述了他对数学的理解,并以亲身经历告诉你什么是真正的数学家。
本书是威廉·费勒的著作《概率论及其应用》卷的续篇。 曾经影响了包括中国在内的世界各国几代概率论及其相关领域的学生和研究者。 即使用今天的标准来衡量,该书仍是一本经典佳作。 本书包括各种重要的分布和随机过程、大数定律、中心极限定理、无穷可分分布、半群方法与无穷可分分布和马尔可夫过程的关系、更新理论、随机游动及傅里叶方法的应用、拉普拉斯变换及其应用、特征函数以及调和分析等19章内容。 本书既可作为概率论及相关学科的教学参考书,亦可作为相关科学研究的引导书。
本书应用迦罗瓦理论清晰透彻地论述了两个古典难题的解决方法,即寻找代数方程的求根公式和限用圆规直尺作图(如三等分任意角、把立方体体积加倍、化圆为正方形,以及作正多边形等),并借此由浅入深地向读者介绍了一些抽象代数的基本知识和研究方法。
Longago(orsoitseemstoday),Chungwroteonpage196ofhisbook[1]:'Onewondersifthepresenttheoryofstochasticprocessesisnotstilltoodifficultforapplications.'Advancesinthetheorysincethattimehavebeenphenomenal,butthesehavebeenacpaniedbyanincreaseinthetechnicaldifficultyofthesubjectsobewilderingastogiveaquaintcharmtoChung'suseoftheword'still'.Meyerwritesintheprefacetohisdefinitiveaccountofstochasticintegraltheory:'…ilfaut…uncoursdesixmoissurlesdefinitions.Quepeutonyfaire?'IhavethoughtupasintuitiveapictureofthesubjectasIcan,writtenitdownatspeed,andrefusedtobeluredbackbypiety(orevenbywit!)tocancelhalfaline.'First'intuition,whichiswhatyouneedwhenyouarelearningthesubject,israw,roughandready;and,asyouhaveguessed,Imaketheexcusethatitdemandsapatiblestyleandlackofpolish.NotethatIwrote'firstintuition'.Consideranexample.Meyer'sconceptofarightprocessisexactlyrightforMarkovprocesstheory,buttheconceptistheresultofalongevolution.Tounderstanditproperly,youneedahighlydevelopedintuition,andthattakestimetoacquire.Thedifficultyw
《妙用正弦学数学》的学习路径是先学计算后讲推理。计算一通,推理自通。“九章算术”的长处在于计算,它的精髓是寓理于算。“几何原本”的长处在于推理,它的精髓是公理化思想。采用这一学习路径,我们可以将两大世界数学名著的精华融为一体。
《微分几何讲义(修订版)》是在作者丘成桐、孙理察一系列演讲的讲稿基础上整理而成的,已成为整体微分几何方面的一本经典著作。它以拓扑、代数几何为基础,以分析为主要工具,论述了几何学中的某些线性和非线性问题。 本书内容包括:比较定理与梯度估计、负曲率流形上的调和函数、Riemann流形上的特征值问题、Riemann流形上的热核、纯量曲率的共形形变、局部共形平坦流形等。书中还包括了丘成桐教授撰写的几何中的非线性分析、几何中未解决的问题、几何学未来的发展、几何与分析回顾、复几何的历史及前景等综合性论述与演讲,宏观和精辟地描述了几何学中的重要问题,展示了该学科的历史和未来发展前景。 《微分几何讲义(修订版)》可供高等院校数学系高年级学生、研究生作教学用书,也可供几何和分析方面的教师及研究人员参考。