由于 概率论与数理统计 既有明显而广泛的应用背景,又有严密的理论分析,初学者往往难以理解和掌握,诸如互不相容、独立和等可能性等条件往往都隐含在问题的叙述中,导致学生往往觉得掌握了基本理论和方法,但解题时又觉得无从下手.本书与《概率论与数理统计》(何春雄等编,2012年2月版)的教材配套,每章都分基本内容、基本要求、基本知识提要、疑难分析、典型例题选讲及习题详解等6部分编写,以期帮助学生既掌握基本概念、基本理论和方法,又具有运用该课程知识解决有关实际问题的能力。主要内容包括:事件与概率;变量与概率分布;向量及其分布;变量的数字特征;大数定律与中心极限定理。
非帕斯卡概率逻辑是美国逻辑学家乔纳森 柯恩 创立的、有别于帕斯卡概率逻辑的一种新型逻辑,该 逻辑系统的*大的特征是不满足帕斯卡公理系统的否 定互补性原理和乘法法则。沈振东*的《非帕斯卡概 率逻辑的哲学基础与应用研究》立足于三个研究视角 :一是在传统的归纳逻辑理论的演化序列中探寻该逻 辑系统的哲学基础的合理性;二是从可能世界语义学 角度对该种逻辑进行形式刻画,并建立逻辑系统;三 是该逻辑系统以相关变量等概念为工具尝试性地对帕 斯卡概率不解释的领域进行解释,或者对应用帕斯卡 概率而导致悖论性的结论进行消解。
哥德巴赫猜想、孪生素数、素数分布、华林问题,除数问题、圆内整点问题、整数分拆及黎曼猜想等数论问题吸引了古今无数的数学爱好者。《解析数论基础》全面详细地讨论了迄今为止研究这些问题的重要的分析方法、理论和结果,介绍了它们的历史及新进展,是研究这些问题必不可少的入门书。
微分方程在数学以外的许多领域有着广泛的应用,它对数学领域中的许多分支起着有效的联结作用。本书是《Universitext》丛书之一,是一部理想的研究生教材。我们曾影印出版了第2版和第4版,第6版与第4版相比,内容做了较大的修改和补充,增加了90页的篇幅(近1/3内容),包括鞅表示论、变分不等式和控制等内容,书后附有部分习题解答和提示。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。
《论语读记》是对《论语》逐篇逐章逐句逐字进行注释、翻译、解读的学术著作。全书约23万字,每篇有 题解 ,概括大意。每章分为 原文 注释 译文 读记 四个部分。笔者自上个世纪80年代于大学课堂上学习《论语》以来,隔上几年又重温一次,每一次读《论语》都有新的认识和体会,真正是常读常新,断断续续形成了若干心得札记,近两年进行系统整理,经过三次较大的修改,遂成此书。坊间注译解读《论语》的书可谓汗牛充栋,但不少读本随意性太大甚至臆说乱解,把一部忧国忧民忧人类的伟大思想著作或弄成鸡汤读物,或弄成管理秘籍,或弄成谋略法则,这类的解读可以说离题太远。笔者试图从原文出发,尽可能准确地读懂《论语》原意,并从人生和现实出发,探寻《论语》对人生对现实的意义。为此,笔者在选择参考书时坚决舍弃某些讲坛明星、畅销作
作为数学工具书,这部巨型手册要求具备哪些特呢?在编写过程中,出版社负责人和我们达成了一项共识,即手册应具科学性、先进性、实用性、规范性与简明性。200余位撰稿人与审稿人按照这些特点和要求会出了艰辛的劳动,我们要感谢他们的通力合作与努力,使手册基本上体现了上述所希冀的特点或特色。 本丛书为国家“九五”重点出版项目。为了读者选购和使用方便,本手册分5卷出版,分别名为“经典数学卷”、“近代数学卷”、“计算机数学卷”、“*数学卷”和“经济数学卷”。需要指出的是,各个分支(篇目)的归属是相对的,这里考虑了各分卷篇幅大小的平衡问题。例如,“蒙特卡罗法”这一篇也可归入“计算机数学卷”。
《数学机械化(中文版)》是围绕作者命名的“数学机械化”这一中心议题而陆续发表的一系列论文的综述。《数学机械化(中文版)》试图以构造性与算法化的方式来研究数学,使数学推理机械化以至于自动化,由此减轻繁琐的脑力劳动。 全书分成三个部分:部分考虑数学机械化的发展历史,特别强调在古代中国的发展历史。第二部分给出求解多项式方程组所依据的基本原理与特征列方法。作为这一方法的基础,《数学机械化(中文版)》还论述了构造性代数几何中的若干问题。第三部分给出了特征列方法在几何定理证明与发现、机器人、天体力学、全局优化和计算机辅助设计等领域中的应用。 《数学机械化(中文版)》可供数学工作者,数学及计算机专业高年级大学生和研究生以及有关工程人员参阅。
内容提要本书以适应统计学教学与统计实践为宗旨,系统地阐述了统计的基本理论、基本知识和基本方法。本书系统性强,结构严谨、布局合理、统计理论与统计实践紧密结合;力求简明易懂,使读者易学易用;力求体现统计知识的整合性、综合性、系统性;力求体系和内容有所突破和创新。全书共15章,包括总论、统计计量、统计资料搜集、统计资料整理、统计比较分析、数据分布特征测度、时间数列分析、统计指数、概率与概率分布、抽样推断、假设检验、方差分析、相关与回归分析、平衡数列分析和空间数列分析等,基本上涵盖了统计学学科体系的主要构成要素。
本书是专为高等院校学生学习概率论与数理统计课程编写的教材,也可作为有关专业的参考书与从事概率论与数理统计相关工作的科研与工程技术人员的参考书。 本书分为上、下册,共10章,上册包括概率论的基本概念;*变量及其分布;多维*变量及其分布;*变量的数字特征;大数定律与中心极限定理及概率论的简单应用等知识。下册包括数理统计的基本概念;样本分布;参数估计;假设检验;线性统计推断以及常用的多元统计方法。 本书每章节末都配有大量的思考题、基本练习,综合练习与自测题,帮助读者循序渐进地牢固地掌握概率论与数理统计知识。
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键,《迭代方法和预处理技术(上册)》系统而深入地介绍了迭代方法、预处理技术及其并行计算,迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、多层和多重网格预处理、问题相关预处理以及非线性预处理;为了方便实施,介绍了迭代方法和预处理技术在诸多方面的应用,并用统一框架介绍了网上可得到的解法器和预处理软件包。 《迭代方法和预处理技术》可用作并行数值方法等相关专业的硕士和博士研究生教材,也可作为关心代数方程组高效求解的科研人员的参考书。
本书内容按现行较为通行的该课程大学教材知识范围分章设练习题、习题解答两部分,练习题分为解答题、选择题与填空题三种题型(部分章节除外)。 习题编选力求由浅入深、典型,解答力求简洁,不刻意追求解答的完整。并精选在科学技术和生产上应用性较强的相关问题。 本书可作为高职高专学生和本科学生学习本课程之用,亦可作为教学参考之用。
本教材是根据高等学校基础理论教学 以应用为目的,以必须够用为度 的原则,参照国家*制订的《概率论与数理统计课程教学基本要求》而编写的。 全书共九章,即*事件与概率、*变量及其分布、多维*变量及其分布、*变量的数字特征、大数定律及中心极限定理、数理统计的基本概念、参数估计、假设检验、方差分析与回归分析。每章均配有习题,书后附有参考答案。 本书可作为理工科大学及专科院校的数学教材或参考书,也可作为综合大学和高等师范院校非教学专业及各类成人教育的数学教材或参考书。
本教材的主要任务是帮助大家学习概率论与数理统计的基本概念,熟悉概率论与数理统计的思维:方式,学会分析与解决实际问题的基本方法。 本教材是在多年教学经验的基础上编写而成的,与其他教材相比,主要有以下特点: 1.遵循认识规律。揭示数学背景 教材中主要概念的介绍大多采用直观引入法,注重概念背景知识介绍。比如,*事件的独立性、两个*变量的独立性、置信区间与假设检验等。 2.加强应用意识的培养,提高综合应用数学知识的能力 例题、习题的选取不仅密切联系生活、生产的实际,而且尽量照顾到各应用学科,使得这些题目不再是纯粹的数学问题,而是工程应用与基本方法的运用并重。 3.注重数学兴趣的培养 避免纯粹的数学推导,把概率论与数理统计写得有用、有趣、有知识。如教材中给出了关于全概率公