这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 2步获取导学视频: ①微信视频号关注 IT阅读排行榜 ②点击 直播回放 栏,上滑寻找
本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
本书源自的哈佛统计学讲座,介绍了帮助读者理解统计方法、随机性和不确定性的基本语言和工具,并列举了多种多样的应用实例,内容涉及偶然性、悖论、谷歌的网页排名算法(PageRank)及马尔可夫链蒙特卡罗方法(MCMC)等。本书还探讨了概率论在诸如基因学、医学、计算机科学和信息科学等领域的应用。全书共分13章,分别介绍了概率与计数、条件概率、随机变量及其分布、期望、连续型随机变量、矩、联合分布、变换、条件期望、不等式与极限定理、马尔可夫链、马尔可夫链蒙特卡罗方法、泊松过程等内容。用容易理解的方式来呈现内容,用实例来揭示统计学中基本分布之间的联系,并通过条件化将复杂的问题归约为易于掌控的若干小问题。书中还包含了很多直观的解释、图示和实践问题。每一章的结尾部分都给出了如何利用R来完成相关模拟和计算的方法。
无
概率论与数理统计是从数量方面研究随机现象的统计规律的一门课程,它是高等院校经济管理类专业的基础课之一。它是在经济管理、质量控制、数量经济学、信息论、预测理论和*理论中有着广泛应用的基础课程。 本书系上海财经大学数学学院编写的经济数学系列教材之一。全书共十章,内容包括事件与概率、条件概率与独立性、随机变量及其分布、随机向量及其分布、数字特征与特征函数、极限定理、统计量与抽样分布、参数估计、假设检验、线性统计推断等。每章均配有不同难易程度的适量习题,书末附有习题答案或提示,供读者参考。 本书坚持理论联系实际,取材新颖,注重科学性、现实性、趣味性,努力使学生从教材中深切地感知概率论与数理统计知识在实际工作与生活中的广泛应用。本书在编写中力求内容完整,做到重点突出、联系实际、由浅入深、通俗
《概率论札记》是作者的 工程数学系列札记 的第四本。前三本分别是《矢算场论札记》(2007)、《复变函数札记》(2011)、《矩阵论札记》(2014)。尽管四本书所涉及领域完全不同,但却有着完全一致的目标,即想建立某种工程数学类型,使读者能自如跨越数学与工程之间的桥梁。 《概率论札记》的核心主题是概率,研究的目标是*事件的统计规律。用一句话概括,即*事件反映单体的不可预洲性,而统计规律反映群体的频率稳定性。 《概率论札记》包括慨率论基础、*量分布和数字特征、大数定律、抽样分布到统汁回归等。书中讨论了慨率论的应用实例,丰富的附录可以给广大工程技术人员带来很大的方便。 《概率论札记》适合广大理工科本科生、硕士和博士研究生学习使用。还可以作为相关专业科技与工程技术人员的入门读物和工具书。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书比较全面系统地介绍蒙特卡罗方法的理论和应用.全书15章,前8章是蒙特卡罗方法的理论部分,包括蒙特卡罗方法简史、随机数产生和检验、概率分布抽样方法、马尔可夫链蒙特卡罗方法、基本蒙特卡罗方法、降低方差基本方法、拟蒙特卡罗方法和序贯蒙特卡罗方法.后7章是蒙特卡罗方法的应用部分,包括确定性问题、粒子输运、稀薄气体动力学、自然科学基础、数理统计学和可靠性、金融经济学及科学实验模拟.
本书主要介绍了处理反问题(不适定问题)的统计方法,尤其侧重于建模与计算这两大问题。与经典文献中处理反问题的方法不同,本书立足于Bayes统计学的框架,将所有变量都视作随机变量,并把反问题的解以概率密度函数的形式给出。同时,对于数学模型本身存在的误差和数值离散导致的额外误差,本书还创造性地进行了源自建模误差的统计分析。 本书详细讨论了先验模型的构造、测量噪声建模、Bayes估值以及非静态统计反演方法等,并引入Markov链Monte Carlo方法以及最优化方法来探究概率分布。另外从Bayes统计学的角度重新研究了经典正则化方法,揭示了两者之间的关系。对于书中得到的结论和涉及的技法,作者还佐以易懂但深刻的例子帮助读者理解。本书将统计方法应用到一些较为前沿的问题中,例如离散误差分析、模型降阶等。在书中,这些统计方法还被
本书针对学习过初级微积分以及概率论与统计学预备课程的高年级大学生或刚入学的研究生。不要求正式学习过概率论。章回顾了本书所需要的关于概率论和微积分的知识。 本书着重讲述了概念的开发,并通过生产、金融和操作领域的应用说明了这些概念。本书扩展了《运筹学——应用范例与解法》中所讲述的概率模型,并更加综合地介绍了一些流行的概念。本书应该适用于下列课程: 企业管理学系、运筹学系、数学系、商业学校,以及雇主财务计划中提供的概率论模型或过程中的课程。 运筹学系列中的第二门课程。 为导引性课程提供足够材料的财务工程学中的课程。
《试验设计及其优化》从技术与应用观点出发,重点阐述了试验设计及其数据处理的优良化方法和各种分析技术,以进一步提升试验设计的水平及其优化的成效。 全书共分11章,除介绍试验设计的基本原理、常用方法外,还介绍了试验设计的全新方法、全新研究成果及应用实例。此外,还介绍了试验设计的常用统计软件。 《试验设计及其优化》可作为理、工、农、医、经济、管理等专业本科生的教学用书,也可供科研人员、工程技术人员、设计人员、实验人员、营销人员和管理人员参考。
这本经典的概率论教材通过大量的例子介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型变量、连续型变量、变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题类,并在书末给出自检习题的解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学本科生的教材,也适合作为研究生和应用工作者的参考书.
线性和非线性代数方程组求解是众多科学与工程计算领域的基础共性任务,也是整体数值模拟的关键。本书系统而深入地介绍了迭代方法、预处理技术及其并行计算。迭代法涉及分裂方法、并行多分裂方法、Krylov子空间方法、并行Krylov子空间方法、Newton法及其变形;预处理技术涉及一般代数预处理、问题相关预处理、多层和多重网格预处理以及非线性预处理;为了方便实施,介绍了方法在诸多方面的应用,并用统一框架介绍了网上可得解法器和预处理软件包。