本书简明地阐述了模糊数学的基本理论和基本方法。全书共ll章,内容包括F集合、F模式识别、F关系与聚类分析、F映射与综合评判、扩张原理与F数、F逻辑、F语言与F推理、F控制、F积分与可能性理论、F概率和F规划,书后附录介绍了集合及其运算、映射、关系与格等预备知识。根据工科院校的特点,还介绍了应用于各专业领域中较成熟的实例。各章配有习题,书后附有答案及提示。 本书可作为工科硕士研究生、工程硕士研究生的教材,或可作为经济类、管理类、机电类、信息科学、计算机科学类各专业高年级本科生或研究生的教材,亦可作为有关工程技术人员的参考书。
《运筹学:理论、模型与Excel求解》既介绍了运筹学的基本理论、方法和模型,又探讨了它们在Excel电子表格中的建模和求解,还包括了大量来自经济管理实践的案例分析。全书共分10章,系统地介绍了线性规划及其单纯形算法、对偶理论与灵敏度分析、整数规划、目标规划、网络计划、决策分析以及博弈论的主要理论和方法,并通过实例介绍了运筹学基本模型在Excel电子表格中的建模和求解过程。本书致力于理论方法与计算机软件的有机结合,通过对大量案例的建模和分析,力求做到理论、方法阐述简单明了,软件操作方便可行,案例分析符合实际。每章都配有一定数量的习题以帮助读者熟练掌握运筹学的基本理论、方法和模型,并为进一步的深入学习奠定基础。本书既可作为高等院校经济和管理类专业的本科生、工商管理硕士(MBA)的教材,也可作为经济和管理
《建模的数学方法与数学模型》内容共分九章:章是数学模型概论,第二章是初等方法建模,第三章是微分法建模,第四章是差分方法建模,第五章是微分方程定性理论分析建模,第六章是线性规划方法建模,第七章是动态规划方法建模,第八章是层次分析法建模,第九章为图论方法建模。附录中给出了《建模的数学方法与数学模型》大部分图形的MAlLAB程序代码,以便更好地对图形验证分析。 《建模的数学方法与数学模型》可作为高等院校本专科生数学建模课程、数学建模竞赛培训课程的,也可供高校师生和相关科技工作者参考。
状态空间控制理论与结构力学模拟关系的数学基础是Hamilton理论体系,在这个体系下,二者的成果可以交叉运用。全书分为两部分:部分是对状态控制线性体系理论的求解,将结构力学中成熟的区段合并消元、子结构分析等技术结合精细积分法几乎可以求得控制、滤波、H∞范数等问题的解;第二部分讨论时变、非线性控制的保辛摄动近似求解,并将模拟理论进一步应用到饱和控制和分散控制等问题的求解。以精细积分方法贯穿全书是本书的一大特色。 本书可作为高等院校力学与自动控制专业高年级本科生和研究生教材,也可供航空、航天、机械工程等相关领域的科研人员参考。
整数规划是运筹学与化理论的重要分支之一,整数规划模型、理论和算法在管理科学、经济、金融工程、T业管理和其他领域有着广泛的应用,本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论,主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分枝定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等。 本书适合运筹学、管理科学、应用数学和工程类专业的高年级本科生和研究生作为整数规划的教材和参考书,读者只需具有高等数学基础就可以阅读。
智能优化混合算法是一种以某类优化算法为基础,融合其他智能算法或理论的混合算法,可用于求解各种工程问题优化解。 本书系统讨论了现今应用较为广泛的几种智能优化混合算法,主要内容来源于作者多年的研究成果,使读者比较全面地了解智能优化混合算法的相关知识及应用。本书理论联系实际,集知识性、专业性、操作性、技能性为一体,对智能优化混合算法的原理、步骤、应用等进行了全面且详细的介绍。
本书是高分子物理的课教材,着重讲授高聚物材料的黏弹性和高弹性,并以相当篇幅介绍高聚物材料在大形变时的屈服行为、断裂现象以及高聚物熔体的流变力学行为,对高分子化学以及塑料、橡胶和纤维类,本书可作为研究生教材。 本书也可作为从事高聚物材料、加工、使用的有关工程技术人员的参考书。 本书章是专为化学系学生写的有关应力、应变及其相互关系的力学基础知识。从第2章开始以3章的篇幅着重介绍高聚物力学性能的时间依赖性;第5、6章介绍高聚物力学性能的温度依赖性和各种力学转变现象;对高聚物材料特有的高弹性,则辟有专门的章节(第7章)详加讨论。考虑到高聚物材料越来越多地作为结构材料应用于机械、建筑乃至高新技术领域中,第8、9章对有关高聚物材料使用中的屈服、破坏和断裂现象作了较多介绍。一章则是
《谁排 ?:关于评价和排序的科学》是关于评分和排名科学的著作。它是搜索排序姊妹篇的第二本。主要内容有:排名概述、梅西法、科利法、基纳法、埃洛体系、马尔可夫法、攻防评分法、基于重新排序的排名方法、分差、用户偏好评分、处理平局、加入权重、“假如……会怎样”的问题与敏感性、排名聚合、比较排名的方法、数据等。《谁排 ?:关于评价和排序的科学》可作为数学、计算机、网络技术、管理学和数据科学等专业的参考书,也可作为教材使用。
数学是研究现实世界数量关系和空间形式的科学,是一种思维方式,在它的发展历史长河中,一直与各种应用问题紧密相关。 本书是为各类本专科院校开展数学建模活动和参加全国大学生数学建模竞赛的指导培训而编著的,是笔者在使用多年的指导培训讲义基础上结合的竞赛题修订而成的。内容包括:数学建模概述、初等数学建模方法示例、预测类数学模型、评价类数学模型、优化类数学模型、概率类数学模型、多元统计分析模型、方程类数学模型、图与网络模型以及如何准备全国大学生数学建模竞赛。同时它对以往在全国大学生数学建模竞赛以及其他数学建模竞赛中出现过的几类主要数学模型进行了归纳总结。
本书是在作者多年研究成果的基础上撰写而成的一本学术专著,主要探讨了模糊多目标多人决策和模糊多目标多人对策2方面的内容。章和第2章主要阐述模糊集与模糊数的基本概念,给出模糊数的运算法则和模糊距离、贴近度的计算方法,建立模糊数的排序方法。第3章给出多目标决策模糊解的概念,建立模糊解的性条件和计算方法。第4章建立不完全偏好信息模糊多目标决策模型和方法。第5章给出模糊多目标多人决策的一般性模型和模糊解概念,讨论了多人决策群体选择函数方法和社会福利函数理论。第6章针对含有模糊数的模糊多目标多人决策问题,建立4种模糊决策方法。 第7章和第8章研究多目标多人非合作对策的基本概念及计算方法,给出多目标多人合作对策解的概念及其计算方法。第9章至1章着重研究模糊二人零和矩阵对策、混合模糊二人零和矩阵对策、模糊
《美国MCM/ICM竞赛指导丛书:美国大学生数学建模竞赛题解析与研究(辑)》是以美国大学生数学建模竞赛(MCM/ICM)赛题为主要研究对象,结合竞赛特等奖的论文,对相关的问题做深刻细致的解析与研究。本辑针对2007年及2008年MCM/ICM竞赛的6个题目:冰盖融化问题、数独谜题生成问题、医疗评估问题、选区划分问题、飞机就座问题以及肾移植问题进行了解析与研究。