本书系统地介绍运筹学中的主要内容,重点陈述应用最为广泛的线性规划、对偶理论、整数规划、非线性规划、动态规划、图与网络、决策分析、博弈论、库存论、排队论与模拟等定量分析的理论和方法。阅读本书只需微积分、线性代数与概率统计的一些基本知识。本书是教学改革项目“基于信息技术平台的运筹学立体化教材”的成果,配备有完整和立体化教学包,包括教师手册、多媒体课件、习题案例答案、补充习题及其答案、教学案例库、考试测评系统、在线支持等。
整数规划是运筹学与最优化理论的重要分支之一.整数规划模型、理论和算法在管理科学、经济、金融工程、工业管理和其他领域有着广泛的应用.本书主要介绍经典的线性整数规划理论和算法,同时简单介绍近年发展起来的非线性整数规划理论.主要内容包括:线性和非线性整数规划问题和模型、线性规划基础、全单模矩阵、图论和网络流问题、算法复杂性理论、分校定界算法、割平面方法、多面体和有效不等式理论、整数规划对偶理论、0-1二次整数规划与SDP松弛、0-1多项式整数规划等.
《数理统计及其在数学建模中的实践(使用MATLAB)》从数理统计分析在数学建模中的应用以及在MATLAB中的实现出发,介绍概率论与数理统计分析的基本概念、典型应用及使用MATLAB进行实际建模分析的基本方法和应用。本书将概率论与数理统计的建模方法与MATLAB典型应用融为一体,既从理论上介绍了数理统计基础的基本原理、数理统计知识在数学建模中的使用方法,又详细讲解了该部分知识在MATLAB环境下的实现方法,并给出了大量的典型实例分析。 《数理统计及其在数学建模中的实践(使用MATLAB)》主要内容包括:利用MATLAB制作统计报告或报表、数据处理与统计作图、统计估计、参数检验、方差分析、回归分析与数据拟合、马尔可夫链、数理统计建模实验设计等。书中从数学建模的角度出发描述了通过数理统计数学建模的一般方法步骤,既有理论推导又详
本教材充分考虑到运筹学的学科特点,问题都来源于当今信息时代的实际案例,并上升到理性,再回到实践中去,解决实践中的问题。积极尝试运用新的思维和科研成果改进教材内容。根据运筹学课程在相关专业能力体系中的作用,希望本教材能够在知识维度提供优化理论和方法,在能力维度能够培养学生解决实际优化问题的能力、推理和分析能力、定量分析问题解决问题的能力、系统分析问题的能力;在态度维度能够更理性的认识问题,学会用数学的语言来描述一个实际问题。本书适合作为普通高等院校开设“运筹学”课程的教材或参考书。
哈姆迪A塔哈撰写的《运筹学导论》是关于运筹学的非常优秀的基础教材,自初版以来,经过多次修订与扩充,如今已推出第9版。第9版的主要特色在于:(1)重视运筹学基本知识的讲解,但对一些问题也作了较深入的分析,以满足不同读者的需要。(2)突出实用性。各章通过实践问题的求解来导出运筹问题的数学模型,这既凸显出该运筹问题的实际背景,也便于读者学习如何进行建模。(3)计算方法与软件相结合。全书使用教学辅助软件TORA、软件包Excel及AMPL等,读者可以利用这些软件工具对所学的模型和计算方法进行计算和检验。 由于原书篇幅宏大,英文版分成基础篇和提高篇两册出版,每册可用作一个学期的教材。
《数学建模思路简析:美国数学建模竞赛试题讨论》依托美国数学建模竞赛的一些有代表性的选题,简略地谈谈建模的思路问题。这些选题肯定无法覆盖整个数学模型的类型,但在实际应用中,仍具有较典型的意义。我们并不会把完整的模型具体地写出,因为这不是我们写此书的目的。本书只对重要的部分加以分析,把模型的大纲写下,并记录一些相关的方法。
本书为研究生,在本科阶段基础运筹学知识学习基础上,通过导入非线性规划,多属性决策,博弈论,应用马尔科夫过程和排队论等内容提高学术型硕士研究生对于运筹学理论和方法理解和掌握的广度和深度。全书分八章,包括非线性规划、非线性规划的数值解法、多目标与多属性决策、风险型决策与贝叶斯决策、博弈论基础、博弈论专题、应用马尔科夫过程和排队论基础等。教学方式以课堂讲授为主、课外练习为辅,理论联系实际,注重案例分析。 通过进一步深化和扩展对运筹学以非线性规划、多属性决策和博弈论为代表的前沿理论和方法的学习,培养管理科学与工程专业的学术型硕士生,博士生掌握和运用定量分析技术支持管理决策的能力。