本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
本书主要讨论用于求解微分方程并具有广泛应用背景的波形松弛方法理论及应用。除绪论外,全书共11章,基本内容包括初值问题与周期问题的连续及离散波形松弛方法的收敛性、波形松弛算子的谱理论、波形松弛方法的加速算法,以及其他一些常用方法。全书论证详尽,系统性强,各章内容自成体系,又相互联系。为便于读者理解和阅读,在内容安排上,由浅人深,循序渐进,详略得当。本书可供计算数学、应用数学、电路与系统以及计算机相关专业研究生阅读,同时也可作为理工类相关专业教师以及从事科学和工程计算的科研工作者的参考书。
全国竞赛组委会数年来先后出版的获奖作品选编不仅有益于今后参赛学生开拓设计思路、提供撰写设计报告的参考,而且已成为很多高等学校信息电子类专业本科综合实验教学、课程设计乃至毕业设计的重要参考文献。全国大学生电子设计竞赛组委会编著的《2011年全国大学生电子设计竞赛获奖作品选编》仅编入了2011年全国大学生电子设计竞赛中获得全国一等奖的部分作品,共计45篇,内容涉及全部8个竞赛题目,其中A题至E题为本科组竞赛题目,F题至H题为高职高专组竞赛题目。书中每篇作品均附有“专家点评”。