科学家预言:“21世纪,人类将从经典信息时代跨越到量子信息时代。”创立了一个世纪的量子力学随着20世纪90年代与信息科学交叉融合诞生的量子信息学,已成为量子信息时代来临的重要标志。 本书是一部研究量子计算与量子优化算法的学术著作。在简要综述国内外该领域研究成果的基础上,主要篇幅介绍了作者近年来取得的创新性研究成果。全书共8章,主要内容包括:量子力学基础;量子计算基础;基本量子算法;Grover量子搜索算法的改进;量子遗传算法;混沌量子免疫算法,量子蚁群算法,量子粒子群算法;量子神经网络模型与算法;量子遗传算法在模糊神经控制器参数优化设计中的应用。 本书由浅入深、深入浅出、可读性好,具有系统性、交叉性、前沿性等特点。为便于学习,书中给出了多种量子优化算法在搜索、优化、聚类、识别与控制中的应
《交点间断Galerkin方法:算法、分析和应用》是作者JanS.Hesthaven和TimWarburton多年研究节点间断Galerkin方法的结晶。书中详细介绍了算法的构造、分析及其多方面的应用。全书共分10章和3个附录。章是引言部分,第2章至第4章主要讨论线性波问题的一些基本性质,第5章分析变系数非线性守恒问题,第6章讨论推广求解二维问题,第7章至第9章主要讨论如何应用DG-FEM求解高阶混合问题,0章给读者提供一个三维空间简单试验和算法实施平台,3个附录讨论的算法和程序将应用于全书始终。 《交点间断Galerkin方法:算法、分析和应用》可供计算数学、应用数学以及工程计算等专业的高年级、研究生及相关研究者阅读参考。
有限元方法是现代科学与工程计算领域中最重要的数值方法之一,间断有限元方法则是传统(连续)有限元方法的创新形式、改进和发展。本书系统地阐述了间断有限元的基本理论、思想和方法。 本书主要针对椭圆方程、一阶双曲方程、一阶正对称双曲方程组、对流扩散方程、Stokes方程和椭圆变分不等式等偏微分方程定解问题,介绍各种形式间断有限元方法的构造、稳定性和误差分析、超收敛性质、后处理技术、后验误差估计和自适应计算。 本书可供高等院校计算数学、应用数学、计算物理和计算力学等专业的研究生、教师以及从事科学与工程计算工作的科技人员阅读和参考。
这是一部非常成功的学术著作,它介绍了科学计算需要的各类数值分析。不但在严谨的数学科学背景下进行讨论,而且给出了数值分析方法的严格证明。本书适合作为数学、工程、计算机科学和其他相关专业高年级本科生或研究生数值分析课程的教材。本书涵盖了计算中数值分析的广泛主题,除数值分析的基础知识外,还涉及线性代数和非线性代数系统统的求解、数值微分与数值积分、常微分方程和偏微分方程的数值解、函数逼近等方面的内容,增加了优化方面的内容和相关信息的网络资源。书中并不详细分析算法,而是着重讲解相关的理论基础。