《轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法。在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。《轨迹》可供中学数学教师参考,也可供中学生课外阅读。
《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析,内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应
《轨迹》主要讨论了点的轨迹的意义和探求轨迹的方法,包括综合法和解析法。在此基础上,还简要地介绍了动图形的轨迹和曲线族的包络的初步知识。《轨迹》可供中学数学教师参考,也可供中学生课外阅读。
The use of the preconditioned conjugate gradient method with circulant preconditioners to solve Toeplitz systems was proposed in 1986. In this short book,the author mainly studies some well-known preconditioners from a theoretical viewpoint. An application of preconditioners to systems of ordinary differential equations is also discussed. The book contains several important research results on iterative Toeplitz solvers obtained in recent years. It could be accessible to senior undergraduate students who, in various scientific computing disciplines, have a basic linear algebra, calculus, numerical analysis, and computing knowledge.The book is also useful to researchers and computational' practitioners who are interested in fast iterative Toeplitz solvers. Dr. Xiao-Qing Jin is a Professor at the Department of Mathematics, University of Macau. He is the author of 4 books and over 70 research papers. He is also a member of the editorial beards of Journal on Numerical Methods and Computer Applications, Nu
《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析,内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。
本书介绍了数值计算的基本概念和基本方法,着重讲述工程计算中的常用算法,如误差理论、非线性方程求根、函数插值、数值积分、一阶常微分方程的数值解法、一元函数的极值问题的一维搜索法、数据拟合、线性方程组的解法等内容。每章后都有本章内容小结并附有一定数量的习题。后一章是计算实习,每一实习均给出该实习的目的与要求、算法概要、用C语言编写并在Turbo C2.0上调试通过的程序、实例及习题。 本书可作为高等工程专科学校或高职院校计算机专业或其他工科专业学生的教材,也可以作为本科学生或一般工程技术人员的自学参考书。`
本书以进化计算与粗糙集为研究目标,内容包括进化计算的数列模型及其在收敛性分析中的应用,基于种群信息熵的思维进化算法自适应搜索策略研究,基于位编码可分辨矩阵的规则提取方法的研究,基于思维进化算法和粗糙集的图像处理方法的研究等。 本书可作为计算机专业师生教学参考用书,也可供计算机相关专业研究人员、从业人员阅读。
本书共分九章,内容包括误差知识,方程的近似解法,线性代数方程组的解法,矩阵的特征值与特征向量的计算方法,插值法与曲线拟合,数值积分与数值微分,常微分方程初值问题的数值解法,偏微分方程的差分解法。每章末配有适量习题,书末附有习题答案。 本书可作为高等工科院校教材,也可供有关方面工程技术人员参考。
The use of the preconditioned conjugate gradient method with circulant preconditioners to solve Toeplitz systems was proposed in 1986. In this short book,the author mainly studies some well-known preconditioners from a theoretical viewpoint. An application of preconditioners to systems of ordinary differential equations is also discussed. The book contains several important research results on iterative Toeplitz solvers obtained in recent years. It could be accessible to senior undergraduate students who, in various scientific computing disciplines, have a basic linear algebra, calculus, numerical analysis, and computing knowledge.The book is also useful to researchers and computational' practitioners who are interested in fast iterative Toeplitz solvers. Dr. Xiao-Qing Jin is a Professor at the Department of Mathematics, University of Macau. He is the author of 4 books and over 70 research papers. He is also a member of the editorial beards of Journal on Numerical Methods and Computer Applications, Numeri