本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础) ;第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8 章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
无
本书系统地论述了有限元方法的数学基础理论。本书以椭圆偏微分方程的边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
《数值分析与科学计算》系统地介绍了数值分析的有关内容,共十章.内容包括:误差:非线性方程求根;线性方程组的数值解法;解线性代数方程组的迭代法;非线性方程组数值解与*化方法;插值方法;数据拟合与函数逼近;数值积分和数值微分;常微分方程的数值解;矩阵特征值与特征向量的计算.本书的*特色是在书中增加了科学计算与matlab软件的内容,在介绍各种数值方法的同时,具体讲解了如何将算法编写成程序,以及如何用数学软件求解相关的数值问题. 《数值分析与科学计算》可作为工科研究生以及本科生“数值分析”或“计算方法”课程的教材或教学参考书,也可作为“数值分析实验”的参考书和数学建模竞赛的辅导教材,还可供科技工:作者和工程技术人员学习和参考.
these notes developed from a course on the numerical solution of conservation laws first taught at the university of washington in the fall of 1988 and then at eth during the following spring. the overall emphasis is on studying the mathematical tools that are essential in developing, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. a reasonable understanding of the mathematical structure of these equations and their solutions is first required, and part i of these notes deals with this theory. part ii deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. i have stressed the underlying ideas used in various classes of methods rather than presenting the most sophisticated methods in great detail. my aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding.
数值分析是理工科各专业的一门专业基础课。全书由十章组成,主要内容包括:高次代数方程与超越方程数值解法,解线性方程组的直接法与迭代法,矩阵特征值与特征向量的数值解法,多项式插值与函数*逼近,数值积分与数值微分,常微分方程初值问题数值解,应用软件MATLAB和MATHEMATICA简介等。主要介绍计算机常用算法的基本思想、误差分析及算法的优缺点,以便于读者在应用时选取适当的算法。 本书在内容上既可以满足计算机专业和计算机信息与技术专业本科生的系统学习,也可以作为非计算机专业本科及研究生教材,同时可为广大科技工作者提供参考。
本书主要是为理工科大学的本科生及研究生学习数值分析课程而编写的辅导书。本书内容包括:误差基础知识、函数插值、函数逼近、数值积分与数值微分、解线性代数方程组的直接法与迭代法、非线性方程求根、矩囝特征值和特征向量的计算以及常微分方程初值问题的数值解法等内容要点及典型习题的分析思路与求解方法。 本书可作为理工科各专业本科生及研究生学习数值分析课程时的参考书。
本书介绍了使用进化算法进行图学习的一些概念、思想、方法和技术。全书共分7章,其中前3章为基础篇,介绍了图学习的基本概念、基本思想、发生发展历程、应用领域和典型的图学习算法Subdue系统,另外还介绍了进化算法的基本理论、基本思想、典型范式、一般框架、各个组成要素、典型实例和一个基于进化规划的子结构发现算法EPSD。第4章~第6章为算法设计篇,分别介绍了基于混合进化、基于回溯机制、基于带全部实例的个体表示和基于个体协同的四种混合进化子结构发现算法。第7章为应用篇,介绍了子结构发现算法在学科建设、区域经济研究、地震数据分析和反恐数据分析中的四个典型应用。附录中还给出了本书用到的多个图数据集。 本书可供所有从事机器学习和数据挖掘的专业技术人员阅读和使用,也可供管理科学和系统工程专业的读者学习参考
今年是恩师郭柏灵院士70寿辰,华南理X-大学出版社决定出版《郭柏灵论文集》。郭老师的弟子,也就是我的师兄弟,推举我为文集作序。这使我深感荣幸。我于1985年考入北京应用物理与计算数学研究所,师从郭柏灵院士和周毓麟院士。研究生毕业后我留在研究所工作,继续跟随郭老师学习和研究偏微分方程理论。老师严谨的治学作风和对后学的精心培养与殷切期望,给我留下了深刻的印象,同时老师在科研上的刻苦精神也一直深深地印在我的脑海中。 郭老师1936年生于福建省龙岩市新罗区龙门镇,1953年从福建省龙岩市中学考入复旦大学数学系,毕业后留校工作。1963年,郭老师服从祖国的需要,从复旦大学调入北京应用物理与计算数学研究所,从事核武器研制中有关的数学、流体力学问题及其数值方法研究和数值计算工作。他全力以赴地做好了这项工作,为我国
accuracy and stability of numericalalgorithms gives a thorough, up-to-date treatment of the behaviorof numerical algorithms in finite precision arithmetic. it combinesalgorithmic derivations, perturbation theory, and rounding erroranalysis, all enlivened by historical perspective and informativequotations. this second edition expands and updates the coverage of thefirst edition (1996) and includes numerous improvements to theoriginal material. two new chapters treat symmetric indefinitesystems and skew-symmetric systems, and nonlinear systems andnewton's method. twelve new sections include coverage of additionalerror bounds for gaussian elimination, rank revealing lufactorizations, weighted and constrained least squares problems,and the fused multiply-add operation found on some modern computerarchitectures. although not designed specifically as a textbook,this new edition is a suitable reference for an advanced course. itcan also be used by instructors at all levels as a supplementarytext from
本书共分17章。前两章分别介绍弹性力学的边界积分方程和边界元法的基本理论构架。第3章介绍解面力边界积分方程应注意的问题及一种解面力边界积分方程的单元动态划分法。第4章叙述求弹性体内部位移和应力场的边界元法后处理问题。第5~7章介绍了传统边界元法一般不考虑的弹性体边界上面力与位移导数之间的关系。第8章详细介绍了单节点二次连续单元的理沦和实施技术。第9章用几个典型的算例说明第5~7章理论的应用。第10~16章主要介绍了边界元法在断裂力学中的应用。为读者阅读方便,第17章简单地叙述了线弹性断裂力学的主要内容。 本书可作为大学力学、土木、机械、航空航天等专业研究生的教材或参考书,也可供从事相关专业的工程技术人员及教学与科学研究工作者参考。
本书主要介绍计算机常用的数值计算方法及有关的基础理论知识。全书共分七章,至六章介绍了引论、插值方法等计算方法的基础知识和基本理论,每章都有一定数量的习题,同时还附有答案。第七章为计算实习内容,用于指导学生自学以及上机实验。该章有六个实习,配有一定数量的编程例题和上机的实习题目。 本书内容安排深入浅出,通俗易懂,易于教学,便于自学,为适应不同要求的需要’安排了一定数量的选学内容。对目录中加有“关”号的章节可酌情舍取。 本书可作普通高校、夜大和专科计算机专业学生的教材,也可供工程技术人员自学参考。
本书共十二章,包括绪论、预备知识、杆系结构有限元、弹性力学平面问题有限元、空间问题与轴对称、板壳分析初步、板壳有限元分析(续)、弹性力学广义变分原理及其有有限元中的应用、有限元动力分析、非线性有限元初步与材料非线性分析、弹性稳定性与几何非线性分析和其他数值方法(含加权余量、半解析、样条有限元和边界单元法)。前六章供本科高年级学生学习有限单元法用,并可供硕士研究生和部分专业博士生选用。本书取材适宜,由浅入深,内容丰富,引入了不少新内容和科研成果;论述严谨、细致,便于学习;较重视原理与方法的论证,但也有足够的算例,几乎章章都有配书教学软件,便于应用和编程参考。 本书可作为土木、交通、水利和工程力学等专业的本科、硕士研究生教材,也可供有关工程技术人员参考。
本书是同济大学计算数学教研室几位老师集体智慧的结晶,内容涉及数值计算的基本内容,如函数插值与函数逼近、线性与非线性方程(组)的求解、数值积分与微分、矩阵的特征值与特征向量的计算、常微分方程的近似数值解,还阐述了当今科学与工程研究中经常遇到的数值计算问题求解的新方法,如快速傅里叶变换、蒙特卡罗*方法(高维积分计算)、数值求导的稳定算法、大型线性方程组的分块迭代算法等;在介绍一些重要的典型算法时,附上了在工程中广泛使用的MATLAB程序书后附有丰富的习题和数值实验题并提供了配套的习题解答。 本书适合作为高等院校本科生和工科研究生“数值计算”课程的教材,也适合相关科研人员参考。
有限元结构分析在大型工程计算中至今仍居重要地位。本书系统地论述了有限元方程组形成和求解的各个步骤的并行计算格式和并行程序设计技巧,着重介绍了有限元分析的并行计算、大型稀疏有限元方程组直接解法的并行处理、大型稀疏线性方程组预处理共轭梯度法的并行处理、矩阵向量积的并行计算,还概括了近年来有关研究的主要成果,是一部具有较高理论水平和实用价值的著作。
前言 第1章 绪论 1 1.1 计算方法的研究对象与特点 1 1.2 误差 3 1.2.1 *误差与*误差限 3 1.2.2 相对误差与相对误差限 3 1.2.3 有效数字 3 1.2.4 误差的传播 4 1.3 数值计算中应注意的一些原则 6 1.4 MATLAB解题示例 8 习题1 10 实验1 11 第2章 插值法 12 2.1 插值多项式定义 12 2.2 插值多项式的存在性与余项 13 2.3 拉格朗日插值多项式 14 2.4 牛顿插值多项式 16 2.4.1 差商的概念 16 2.4.2 差商性质 17 2.4.3 牛顿插值多项式及余项 18 2.5 埃尔米特插值多项式 20 2.5.1 埃尔米特插值多项式定义 20 2.5.2 埃尔米特插值多项式的构造 20 2.5.3 埃尔米特插值多项式的性 21 2.5.4 余项 21 2.6 分段线性插值 23 2.6.1 龙格现象 23 2.6.2 分段线性插值 24 2.7 三次样条插值 25 2.7.1 三次样条插值函数的定义 25 2.7.2 确定三次样条插值函数的条件分析 25 2.7.3 三次样条插值函数的构建 25 2.7.4 三次样条插值函数的误差界与收敛性 27 2.8 MATLA
郭坤宇编著的《算子理论基础》前3章概述线性泛函分析的基本内容。第四、第五章建立在前3章的基础上,重点讲述算子理论、算子代数的一些基本概念、理论和方法。在第六章,我们综合运用前5章的知识研究3类具体的算子——Toeplitz算子、Hankel 算子和复合算子,这3类算子具有广泛的应用价值。 书中列举了大量的应用实例,并配备了一定数量的习题。 本书内容精炼,叙述简明扼要,可作为数学院系高年级学生和研究生的教学用书或教学参考书,特别可用于算子理论与算子代数方向研究生的入门用书。