数学归纳法是一种数学证明方法,通常被用来证明给定命题在整个(或者局部)自然数范围内成立。 索明斯基编著的《数学归纳法》共分4章:数学归纳法,例题及习题,应用数学归纳法证明初等代数的一些定理,习题解答。 本书适合于初、高中师生,以及高等师范类数学教育专业的学生和数学爱好者参考阅读。
《全国高等院校计算数学教材:现代数值计算方法》是为理工科院校各专业本科生、研究生开设的“数值计算方法”课程而编写的教材。全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括误差分析、线性方程组的直接解法与迭代解拟合、数值积分与数值微分、常微分方程初值问题的数值解法等。《全国高等院校计算数学教材:现代数值计算方法》取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学。为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识。书末附有习题答案与提示,可供教师与学生参考。 《全国高等院校计算数
本书系统地总结了近年来非线性误差理论与测量平差的*成果,论述了其基本理论和计算方法。主要内容包括:张量与微分几何的基本概念,非线性小二乘法的常用基本算法;顾及到二次项和三次项的非线性函数的广义方差一协方差传播率;非线性条件平差的迭代解法与顾及到二次项的近似直接解法;非线性平差模型强度的曲率度量与非线性诊断;非线性参数平差和秩亏自由网平差顾及到二次项的近似直接解法以及非线性参数平差的迭代解法、张量几何法及扩展的张量几何法等。 本书侧重实用的非线性平差计算方法,理论叙述力求深入浅出。本书可作为测绘工程专业高年级大学生和研究生的关于现代测量误差理论与数据处理的教学参考书,亦可供有关测绘专业的教师、科研和工程技术人员参考。
本书是《高等学校精品规划教材》之一。全书共分九章,主要内容包括:解线性方程组的直接方法,解线性方程组的迭代法,非线性方程与非线性方程组解法,矩阵特征值和特征向量的计算,插值与逼近,数值积分与微分,常微分方程数值解法,偏微分方程的差分方法等。主要介绍科学计算中常用的数值计算方法,并简明介绍各种算法的基本思想与原理。 本书可作为计算机科学与技术专业及非计算机专业硕士研究生计算方法课程教材,也可作为理工科院校非数学专业计算方法、数值分析课程的教材,还可供广大工程科技人员参考。
本书是为大学数学系计算数学专业本科生编写的“数值代数”课教材。全书共分8章,内容包括:绪论,求解线性方程的Gauss消去法、平方根法、古典迭代法和共轭梯度法,线性方程组的敏度分析和消去法的舍入误差分析,求解线性小二乘问题的正交分解法,求解矩阵特征值问题的乘幂法、反幂法、Jacobi方法、二分法、分而治之法和QR方法。本书在选材上既注重了基础性和实用性,又注重反映该学科的*进展;在内容的处理上,在介绍方法的同时,尽可能地阐明方法的设计思想和理论依据,并对有关的结论尽可能地给出严格而又简洁的教学证明;在叙述表达上,力求清晰易读,便于教学与自学。每章后配置了较丰富的练习题和上机习题,其目的是为学生提供足够的练习和实践的素材,以便学生复习、巩固和拓广课堂所学知识。 本书可作为综合大学、理工科大学、高
本书介绍了科学计算中常用的计算方法,其内容包括误差的概念,插值方法,线性代数方程组的解法,非线性方程的求根,数值积分与数值微分,小二乘法,特征值的计算,常微分方程初值问题的数值解法等。该书重点突出,深入浅出,便于教学。每种算法都附有C语言和Matlab语言程序(放入附在本书封底的光盘里),便于读者上机实习,也便于实际工作者查阅和上机使用。
本书是全国高等学校首次出版使用的《误差理论与数据处理》教材,自1981年出版第1版以来,25年间共再版4次,本书为第5版。 第5版教材在保持原有优秀教材特色基础上,删减和补充了部分内容,以适应更多专业的教学需要。本书第5版讲述科学实验和工程实践中常用的静态测量和动态测量的误差理论与数据处理,并重点结合几何量、机械量和相关物理量测量进行介绍,内容包括:绪论、误差的基本性质与处理、误差的合成与分配、测量不确定度、线性参数的小二乘法处理、回归分析、动态测试数据处理基本方法、动态测量误差及其评定等。各章附有习题供选用,书末附录为常用数表。 本书为高等学校仪器仪表类专业教材,也可作为机械类专业、电气电子类专业、信息类专业和其他有关专业教材,同时可供科研及生产单位的研究设计和计量测试等工程技术人员
本书是全国高等学校首次出版使用的《误差理论与数据处理》教材,自1981年出版第1版以来,25年间共再版4次,本书为第5版。 第5版教材在保持原有优秀教材特色基础上,删减和补充了部分内容,以适应更多专业的教学需要。本书第5版讲述科学实验和工程实践中常用的静态测量和动态测量的误差理论与数据处理,并重点结合几何量、机械量和相关物理量测量进行介绍,内容包括:绪论、误差的基本性质与处理、误差的合成与分配、测量不确定度、线性参数的小二乘法处理、回归分析、动态测试数据处理基本方法、动态测量误差及其评定等。各章附有习题供选用,书末附录为常用数表。 本书为高等学校仪器仪表类专业教材,也可作为机械类专业、电气电子类专业、信息类专业和其他有关专业教材,同时可供科研及生产单位的研究设计和计量测试等工程技术人员
《<数学中的小问题大定理>丛书·拉格朗日中值定理:从一道北京高考试题的解法谈起》从一道北京高考试题的解法谈起,详细介绍了拉格朗日中值定理的意义、应用、证明及推广。读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用,内容全面,知识点丰富。《<数学中的小问题大定理>丛书·拉格朗日中值定理:从一道北京高考试题的解法谈起》适合大学师生及数学爱好者参考阅读。
本书的内容是现代科学计算中常用的数值计算方法及其原理,包括插值法、函数逼近与曲线拟合、数值积分、常微分方程数值方法、线性代数方程组的解法、非线性方程和方程组的解法及矩阵特征值与特征向量的计算,每章附有习题(书末有答案)及数值实验题。 本书在附录中给出了用Matlab程序设计实现各章数值实验题的求解过程。 本书可作为理工科大学各专来工学硕士、工程硕士,相关专业的职硕士国家统考课程及教学专业本科生的教材,也可供从事科学计算的科技工作者参考。
本书是为理工科院校各专业本科生、研究生开设的“数值计算方法”课程而编写的教材。全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括误差分析、线性方程组的直接解法与迭代解拟合、数值积分与数值微分、常微分方程初值问题的数值解法等。本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学。为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识。书末附有习题答案与提示,可供教师与学生参考。 本书可作为理工科院校各专业本科生、研究生“数值计算方法”课程的教材或教学参考书,也可供从事数值计算的科技工作
本书是在作者对粗糙集、模糊集相关理论研究和应用的基础上,将一些结果和应用加以汇总、总结、整理而成。主要内容包括:粗糙集理论的基本概念;模糊集理论的基本概念;粗糙集与模糊集的互补性研究及其应用;对不完备信息系统中粗糙集理论的模型的扩充研究;粗糙集在中医胸痹证候识别中的应用研究。 本书适合知识发现、数据挖掘、人工智能、决策分析、中医研究及应用等领域的科研人员和高校师生阅读。
《计算方法》共9章:第1~8章为计算方法的理论部分,内容包括绪论、非线性方程求根、线性方程组的数值解法、函数插值、曲线拟合、数值积分与数值微分、常微分方程的数值解法、矩阵特征值及特征向量的数值求解,各章均配有例题和习题,供读者进一步学习;第9章为实验部分,给出了详细而又注重实际教学的实验指导。 《计算方法》在注重数学理论的同时也注重计算机的应用,内容由浅人深,先理论后实践,结构安排合理,概念清晰,理论分析严谨,推理过程清楚、严密。 本书可供高等院校数学与应用数学、信息与计算科学、计算机科学、自动化与控制科学等专业的本科生和研究生使用,也可供从事科学研究及工程应用领域的科技人员参考。
本书从工程和科学应用的角度介绍了常见数学问题数值分析的有关理论与方法。具体内容包括:非线性方程的求根、插值与曲线拟合方法、数值积分、微分方程的数值解法、线性方程组的数值解法、MATLAB语言编程基础等内容。此外,在附录中给出了常见数学问题数值解法的MATLAB语言程序和部分习题的参考答案。本书内容简明、适用,叙述通俗、易懂,适于教学和自学。 本书适合普通高等学校计算机、应用数学类有关专业作为教材使用,亦可供有关工程技术人员自学参考。
本书是在贯彻落实*《高等教育面向21世纪教学内容和课程体系改革计划》的要求精神及第1版的基础上,按照工科及经济管理类“本科数学基础课程教学基本要求”并结合当前大多数本专科院校的学生基础、教学特点和教材改革精神进行编写的,全书以通俗易懂的语言,全面而系统地讲解数学实验的内容,全书共分7章,第1章是绪论;第2-5章是基础实验部分,内容包括一元微积分实验、多元微积分实验、线性代数实验和概率论与数理统计实验;第6章是综合实验;第7章是数学建模初步,每章都以实验的形式将有关内容与MATLAB相结合,达到理论与实践的统一,便于读者学习和上机实验,每节后面有“练习题”,每小节(或节)的例题(或实验)前有简要的“实验目的”,并在附录中有MATLAB的基本操作。 本教材理论系统,举例丰富、新颖,讲解透彻,难度适宜,
数值分析是理工科各专业的一门专业基础课。全书由十章组成,主要内容包括:高次代数方程与超越方程数值解法,解线性方程组的直接法与迭代法,矩阵特征值与特征向量的数值解法,多项式插值与函数*逼近,数值积分与数值微分,常微分方程初值问题数值解,应用软件MATLAB和MATHEMATICA简介等。主要介绍计算机常用算法的基本思想、误差分析及算法的优缺点,以便于读者在应用时选取适当的算法。 本书在内容上既可以满足计算机专业和计算机信息与技术专业本科生的系统学习,也可以作为非计算机专业本科及研究生教材,同时可为广大科技工作者提供参考。
围绕几何非协调分解的Lasrange乘子区域分解方法,作者主要从两方面展开工作:一是算法的构造和分析,二是程序的设计和实现。通过对泊松问题、线弹性问题的研究,在理论上,作者不仅发展了区域分解方法中至关重要的粗空间选取技术,而且推广了非精确预条件子的构造方法;在程序上,为基于几何非协调分解的Lagrange乘子区域分解方法设计了一整套数据结构。
本书根据普通高等理工科院校“计算方法”和“数值分析”课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分、常微分方程初值问题的数值解法等。书中内容力求精炼充实、由浅入深,从典型算法与实际问题着手,循序渐进,简洁易懂,便于教学与自学。每章都有较明确简洁的算法与实例,着重训练读者的计算能力,培养读者解决实际问题的方法和创新能力。每章后还配有适量的习题,便于读者掌握和巩固重点内容、算法与基本思想。
本书是为高等院校计算数学专业高年级本科生和研究生偏微分方程数值解法课程编写的教材。全书分为差分方法和有限元方法两个相互独立的部分。差分方法部分的先修课程是数值分析、数值代数;有限元部分则同时要求学生对实变函数与泛函分析有初步的了解。掌握一定的数学物理方程的理论和方法无疑有助于本课程的深入学习。 本书在选材上注重充分反映偏微分方程数值解法中的核心内容,力图展现算法构造与分析的基本思想;在内容的处理上,体现了由浅入深、循序渐进的原则;在叙述表达上,严谨精练、清晰易读,便于教学与自学。为便于读者复习、巩固、理解和拓广所学的知识,每章之后配置了相当数量的习题,并在书后附上了大部分习题的答案或提示。 本书可作为综合大学、理工科大学、高等师范院校计算数学以及相关学科的本科生和研究生的
本书介绍了求发展方程数值解的原理和计算方法,包括将发展方程定解问题离散化的途径、方法,计算格式的设计和求解算法,以及关于数值方法的理论分析。本书内容既保留了那些行之有效的传统方法和经典理论结果,更注重于介绍近几十年来兴起的新方法和传统方法的新发展,反映近几十年来发展方程数值方法的研究与应用方面取得的新进展、新成果。此外,书中列举了若干实际应用问题(多属非线性与耦合问题)。 本书可供计算数学、应用数学、力学等专业的研究生、教师以及从事科学与工程计算应用与研究工作的科技人员参考。
本书系统地介绍了现代科学与工程计算中常用的数值计算方法及有关的理论和应用。全书共分9章,包括误差分析,函数插值,函数逼近,数值积分与数值微分、线性方程组的直接解法和迭代解法,非线性方程的数值解法,矩阵特征值与特征向量的计算,以及常微分方程初值问题的数值解法等。本书基本概念清晰准确,理论分析科学严谨,语言叙述通俗易懂,结构编排由浅入深,注重启发性。本书始终贯穿一个基本理念,即在数学理论上等价的方法在实际数值计算时往往是不等效的,因此,本书精选了大量的计算实例,用来说明各种数值方法的优劣与特点。各章末还有一定数量的习题供读者练习之用。 读者对象:高等院校工科研究生和数学系各专业本科生,从事科学与工程计算的科研工作者。
本书力图将数值分析的基本知识与Matlab软件有机地结合,强调数值分析的基本方法与相关算法的Matlab实现。介绍如何应用Matlab提供的数值分析有关的函数来实现数值分析中的各种方法,强调数值方法的应用,目的是使读者在学习数值分析的方法之后,能够应用数学软件来解决实际问题。 本书分三个层次,个层次是数值分析的基本方法,与相应算法的Matlab实现;第二个层次是对数值分析中的一些问题作深入讨论,是数值分析内容的扩展;第三个层次是介绍与数值分析有关的Matlab函数,以案例的形式来分析问题,讨论如何运用数值分析的知识以及相关的Matlab函数解决实际问题。 本书可作为“数值分析”实习或实验课的教材或教学参考书,可作为“数值分析”课程和教学实验课的辅助教材,也可供科技工作者和工程技术人员学习与参考。本书对如何运用Matlab函数解
本书介绍了使用进化算法进行图学习的一些概念、思想、方法和技术。全书共分7章,其中前3章为基础篇,介绍了图学习的基本概念、基本思想、发生发展历程、应用领域和典型的图学习算法Subdue系统,另外还介绍了进化算法的基本理论、基本思想、典型范式、一般框架、各个组成要素、典型实例和一个基于进化规划的子结构发现算法EPSD。第4章~第6章为算法设计篇,分别介绍了基于混合进化、基于回溯机制、基于带全部实例的个体表示和基于个体协同的四种混合进化子结构发现算法。第7章为应用篇,介绍了子结构发现算法在学科建设、区域经济研究、地震数据分析和反恐数据分析中的四个典型应用。附录中还给出了本书用到的多个图数据集。 本书可供所有从事机器学习和数据挖掘的专业技术人员阅读和使用,也可供管理科学和系统工程专业的读者学习参考