四元术是元朝朱世杰提出的建立和解答多元高次方程组的方法,它代表了中国古代数学的杰出水平。本书从沈钦裴四元消法法则的统一表示人手,把沈钦裴四元细草用吴消元法的笔算形式表示出来,找到多项式方程组的一般解法。 本书适合数学史工作者、大学数学系师生及计算机专业的师生、中学数学教师及数学爱好者阅读。
The use of the preconditioned conjugate gradient method with circulant preconditioners to solve Toeplitz systems was proposed in 1986. In this short book,the author mainly studies some well-known preconditioners from a theoretical viewpoint. An application of preconditioners to systems of ordinary differential equations is also discussed. The book contains several important research results on iterative Toeplitz solvers obtained in recent years. It could be accessible to senior undergraduate students who, in various scientific computing disciplines, have a basic linear algebra, calculus, numerical analysis, and computing knowledge.The book is also useful to researchers and computational' practitioners who are interested in fast iterative Toeplitz solvers. Dr. Xiao-Qing Jin is a Professor at the Department of Mathematics, University of Macau. He is the author of 4 books and over 70 research papers. He is also a member of the editorial beards of Journal on Numerical Methods and Computer Applications, Numeri
本书是在贯彻落实*《高等教育面向21世纪教学内容和课程体系改革计划》的要求精神及第1版的基础上,按照工科及经济管理类“本科数学基础课程教学基本要求”并结合当前大多数本专科院校的学生基础、教学特点和教材改革精神进行编写的,全书以通俗易懂的语言,全面而系统地讲解数学实验的内容,全书共分7章,第1章是绪论;第2-5章是基础实验部分,内容包括一元微积分实验、多元微积分实验、线性代数实验和概率论与数理统计实验;第6章是综合实验;第7章是数学建模初步,每章都以实验的形式将有关内容与MATLAB相结合,达到理论与实践的统一,便于读者学习和上机实验,每节后面有“练习题”,每小节(或节)的例题(或实验)前有简要的“实验目的”,并在附录中有MATLAB的基本操作。 本教材理论系统,举例丰富、新颖,讲解透彻,难度适宜,
本书主要研究了求解多目标优化问题的人工蜂群算法及混合遗传算法,针对不同的测试问题,建立了相应的多目标优化算法模型,并从多个角度与相关算法进行了试验对比分析。在多目标人工蜂群算法方面,设计了一种多目标人工蜂群框架,并针对框架的各部分,实现了多种策略,从而衍生出多种多目标人工蜂群算法,并将其应用于求解具有连续空间的函数优化问题和离散空间的面向QoS的无线网络路由优化问题。在多目标混合遗传算法方面,对已有的几种被广泛认可的遗传算法及PLS算法进行了研究,提出了几种改进的混合多目标遗传算法,并利用提出的算法求解了光网络优化问题及服务选取问题。
数值分析是理工科各专业的一门专业基础课。全书由十章组成,主要内容包括:高次代数方程与超越方程数值解法,解线性方程组的直接法与迭代法,矩阵特征值与特征向量的数值解法,多项式插值与函数*逼近,数值积分与数值微分,常微分方程初值问题数值解,应用软件MATLAB和MATHEMATICA简介等。主要介绍计算机常用算法的基本思想、误差分析及算法的优缺点,以便于读者在应用时选取适当的算法。 本书在内容上既可以满足计算机专业和计算机信息与技术专业本科生的系统学习,也可以作为非计算机专业本科及研究生教材,同时可为广大科技工作者提供参考。
本书主要是为理工科大学的本科生及研究生学习数值分析课程而编写的辅导书。本书内容包括:误差基础知识、函数插值、函数逼近、数值积分与数值微分、解线性代数方程组的直接法与迭代法、非线性方程求根、矩囝特征值和特征向量的计算以及常微分方程初值问题的数值解法等内容要点及典型习题的分析思路与求解方法。 本书可作为理工科各专业本科生及研究生学习数值分析课程时的参考书。
本书是一本只要具有工科大学本科数学基础就能够读懂并很快开发应用的小波书籍,但是本书并非是小波分析的简化版本。相反,小波分析中的失真及尺度的概念在书中都有详尽的阐述,这在一般书籍中比较少见。内容包括预备知识,介绍信号、采样和滤波等基础知识;连续小波及其应用;一维离散小波变换和小波包的常规章法、消除频率混淆的改进算法;一维离散小波变换和小波包的工程应用法;二维离散小波变换和小波包算法以及在图像处理中的应用方法;从数学角度阐述小波分析的深层概念。 本书适合作为高等工科院校的研究生教材,也可供工程技术人员参考。
本书是《数值计算方法》的配套教材,内容包括数值计算引论、非线性方程的数值解法、线 性代数方程组的数值解法、插值法、曲线拟合的小二乘法、数值积分和数值微分、常微分方程初值问题的数值解法和试题及解答等8章。前7章每章均由内容提要、习题及解答、同步练习题及解答三部分组成,后一章给出了3份试题样卷及解答。 本书可作为高等学校理工科各专业本科生学习数值分析或计算方法的配套教材或参考书。
本书根据普通高等理工科院校“计算方法”和“数值分析”课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分、常微分方程初值问题的数值解法等。书中内容力求精炼充实、由浅入深,从典型算法与实际问题着手,循序渐进,简洁易懂,便于教学与自学。每章都有较明确简洁的算法与实例,着重训练读者的计算能力,培养读者解决实际问题的方法和创新能力。每章后还配有适量的习题,便于读者掌握和巩固重点内容、算法与基本思想。
本书重点介绍微积分、线性代数和微分方程等课程常用的数值计算的基本方法、算法设计、理论分析和实现技巧。内容包括函数插值、数据拟合、数值积分、数值微分、矩阵特征值计算、线性方程组的各种解法、非线性方程(组)的迭代方法和微分方程数值解法等,同时各章均配有适量的例题和习题。全书兼顾理论分析的同时,重视方法的实现,所描述的算法可操作性强,适合理工科研究生、大学高年级本科生使用,也可供科技工作者和工程技术人员参考使用。
本书是与作者所编写的《数值计算方法》(科学出版社出版,ISBN7- 03-015964-0)配套的学习参考书,全书共分七章,内容包括数值方法研究的内容及误差分析、非线性方程的数值解法、线性方程组的直接方法和迭代方法、函数逼近的插值与曲线拟合法、数值积分与数值微分、常微分方程初值问题及边值问题的数值解、矩阵特征值与特征向量的数值解等。每章分三节,节讲述基本概念和主要结论,第二节给出典型例题的详细解答;第三节给出主教材中A类习题的题解和答案。附录给出了上机题的C 语言源程序和程序运行的结果,此部分内容基本上囊括了主教材的所有算法。 本书可作为高等院校计算机应用专业等非数学专业工科本科生及工科研究生学习主教材时不可缺少的配套学习参考书,也可供从事科学与工程计算的科技工作者参考。
本书介绍了MATLAB和LTNGO的常用编程方法。书中设计的数学实验既有趣味数学问题实验,高等数学的微积分实验。线性代数的矩阵运算和求解方程组实验。概率中的模拟实验和中心极限定理实验,也有微分方程实验和应用广泛且有实用价值的神经网络实验,还有充满趣味的数字水印实验、数独实验。所有这些实验都是简单介绍原理,然后强调应用。并有完整的程序实现,便于读者直接上机实验。本书内容广泛,但并不迫求高深理论,程序简洁易懂,让使用者容易掌握,做到学有所获。
本书共分九章,内容包括误差知识,方程的近似解法,线性代数方程组的解法,矩阵的特征值与特征向量的计算方法,插值法与曲线拟合,数值积分与数值微分,常微分方程初值问题的数值解法,偏微分方程的差分解法。每章末配有适量习题,书末附有习题答案。 本书可作为高等工科院校教材,也可供有关方面工程技术人员参考。
本书主要介绍计算机常用的数值计算方法及有关的基础理论知识。全书共分七章,至六章介绍了引论、插值方法等计算方法的基础知识和基本理论,每章都有一定数量的习题,同时还附有答案。第七章为计算实习内容,用于指导学生自学以及上机实验。该章有六个实习,配有一定数量的编程例题和上机的实习题目。 本书内容安排深入浅出,通俗易懂,易于教学,便于自学,为适应不同要求的需要’安排了一定数量的选学内容。对目录中加有“关”号的章节可酌情舍取。 本书可作普通高校、夜大和专科计算机专业学生的教材,也可供工程技术人员自学参考。
本书是为工科研究生或非数学专业本科生的数值分析课程编写的教材。主要介绍计算机上常用的数值计算方法。内容包括线性方程组的数值解法,非线性方程(组)求根,矩阵特征值和特征向量的计算,函数的插值与逼近,数值积分,求解常微分方程和偏微分方程的差分方法等。书中着重阐述了各种数值方法的基本思想和基本原理,注重基本方法的掌握和运用,同时在理论上也作了必要的分析和论证。书中各章节均附有习题和参考答案,并配有上机计算实验题目。 本书也可作为运用计算机进行科学计算工作的工程技术人员的参考书。
本书是作者多年来在智能优化算法及其应用所进行的一系列深入研究的基础上撰写而成,同时吸收了国内外许多具有代表性的*研究成果。全书取材新颖,覆盖面广,深入浅出,注重理论联系实际,力图体现国内外在这一学术领域的*研究进展。 全书共6章,主要包括:第1章为绪论,介绍优化问题和优化算法及其分类;第三第3、第4和第5章分别介绍遗传算法、免疫克隆选择算法、粒子群算法和蚁群算法的优化流程、机制与特点、收敛性理论、参数选取与实现技术、算法改进等内容,并对改进的算法(自适应遗传算法、免疫遗传算法、量子遗传算法、自适应克隆算法、自适应小生境克隆算法、小生境粒子群算法和小生境蚁群算 法)进行了仿真研究和参数取值分析;第6章首先介绍量子计算的研究进展,进而介绍量子计算的实现过程,并把量子计算应用到固定费用运输问题
本书是《高等学校精品规划教材》之一。全书共分九章,主要内容包括:解线性方程组的直接方法,解线性方程组的迭代法,非线性方程与非线性方程组解法,矩阵特征值和特征向量的计算,插值与逼近,数值积分与微分,常微分方程数值解法,偏微分方程的差分方法等。主要介绍科学计算中常用的数值计算方法,并简明介绍各种算法的基本思想与原理。 本书可作为计算机科学与技术专业及非计算机专业硕士研究生计算方法课程教材,也可作为理工科院校非数学专业计算方法、数值分析课程的教材,还可供广大工程科技人员参考。
本书系统地介绍了现代科学与工程计算中常用的数值计算方法及有关的理论和应用。全书共分9章,包括误差分析,函数插值,函数逼近,数值积分与数值微分、线性方程组的直接解法和迭代解法,非线性方程的数值解法,矩阵特征值与特征向量的计算,以及常微分方程初值问题的数值解法等。本书基本概念清晰准确,理论分析科学严谨,语言叙述通俗易懂,结构编排由浅入深,注重启发性。本书始终贯穿一个基本理念,即在数学理论上等价的方法在实际数值计算时往往是不等效的,因此,本书精选了大量的计算实例,用来说明各种数值方法的优劣与特点。各章末还有一定数量的习题供读者练习之用。 读者对象:高等院校工科研究生和数学系各专业本科生,从事科学与工程计算的科研工作者。
围绕几何非协调分解的Lasrange乘子区域分解方法,作者主要从两方面展开工作:一是算法的构造和分析,二是程序的设计和实现。通过对泊松问题、线弹性问题的研究,在理论上,作者不仅发展了区域分解方法中至关重要的粗空间选取技术,而且推广了非精确预条件子的构造方法;在程序上,为基于几何非协调分解的Lagrange乘子区域分解方法设计了一整套数据结构。
本书是理工科本科各专业计算方法课程的教材,内容包括曲线插值和曲线拟合、数值积分和数值微分、非线性方程求根的迭代法、解线性方程组的迭代法、解线性方程组的直接法、解常微分方程的差分方法、矩阵特征值与特征向量的数值方法等。每章提供了不同类型的习题,并在书末给出了习题解答的提示。 本书突出了常见数值问题的应用背景,突出了各类数值方法的构造思想、算法实现和实用范围。其内容是实用的,有关概念和算法都是直观易懂的。本书可读性强且利于自学,能指导读者应用现有软件去解决常见的实际问题。 本书也可作为有关工程技术人员的参考书。