三角恒等变形是中学数学的难点之一,《三角恒等式》全面系统地总结了中学课程中三角恒等变形的内容,对三角恒等式的证法和技巧做了分类指导,着重解题思路的分析.内容包括同角函数关系、加法定理、反三角函数、三角形的边角关系、三角恒等变形的各种应用以及代数对三角恒等变形的应用等。 《三角恒等式》精选例题、习题218则,习题还附有解法提示,可供中学师生、中学程度的自学青年作为学习三角恒等式的辅助读物。
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书是计算方法的入门教材,旨在通过一些基本的数值方法来探究数值算法设计的基本技术,诸如缩减技术、校正技术、松弛技术与二分技术等,《计算方法:算法设计及其MATLAB实现(第2版)》追求简约,数值算法的设计与分析尽量回避烦琐的数学演绎,《计算方法:算法设计及其MATLAB实现(第2版)》追求统一,所提供的算法设计技术囊括了快速算法与并行算法等高效算法的设计,《计算方法:算法设计及其MATLAB实现(第2版)》追求新奇,算法的设计机理扎根于博大精深的中华文化,讲授《计算方法:算法设计及其MATLAB实现(第2版)》的基本内容约需36-40课时。
面对尚未先修结构力学、弹性力学、计算方法的本科生,如何讲好这门课程,让学生不要望而却步,作者在教学中尽量从材料力学等基本知识入手,深入浅出,让学生抓住有限元方法的本质。 为了不让学生对有限元浅尝辄止,在《有限元方法及其工程案例》编写中,作者陈雪峰、李兵、曹宏瑞结合多年的有限元教学经验和工程实践,撰写了几个典型工程案例,期望在教学中结合工程案例,让学生身临其境、学用结合;同时,结合作者主持的国家杰出青年科学基金等项目,撰写了一章新型有限元方法,让学生开阔思路、学以创新。
本书是《数值计算方法》的配套教材,内容包括数值计算引论、非线性方程的数值解法、线性代数方程组的数值解法、插值法、曲线拟合的*小二乘法、数值积分和数值微分、常微分方程初值问题的数值解法和试题及解答等8章。前7章每章均由内容提要、习题及解答、同步练习题及解答三部分组成,*后一章给出了3份试题样卷及解答。本书可作为高等学校理工科各专业本科生学习数值分析或计算方法的配套教材或参考书。
本书是一本全面讲述数值计算方法的教材。全书共分七章,内容包括数值方法的研究及误差分析、非线性方程的数值解、线性方程组的直接方法和迭代方法、函数逼近的插值与曲线拟合法、数值积分与数值微分、常微分方程初值问题与边值问题的数值解、矩阵特征值与特征向量的数值解等。本书将科学计算工具软件——MATLAB与数值计算方法有机地结合,给出了常用经典算法的MATLAB程序代码和算例,从而达到培养学生科学计算的能力。为使读者快速掌握MATLAB的实用技术,本书附录给出了MATLAB入门。本书概念清晰,理论分析严谨,语言叙述通俗易懂,并注重实用性,所有的算法均配有伪程序、MATLAB代码。各章末都附有一定数量的习题,以供读者学习时进行练习。 本书可作为高等院校十箅机应用专业等非数学专业理工科本科生的教材,以及工科研究生的参考教材,
THE major part of this book (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which has been only slightly changed in the present edition.
《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》从一道2005年全国高中联赛试题的高等数学解法谈起,详细介绍了拉格朗日乘子定理的相关知识及应用,《 数学中的小问题大定理 丛书(第2辑):拉格朗日乘子定理》共9章,读者可以较全面地了解这一类问题的实质,并且还可以认识到它在其他学科中的应用。
本教材是美国华盛顿州立大学David V.Hutton教授为大学本科生编写的教材。为了更适于中国学生学习,根据中国教学内容结构和专业学习要求,我们对本书进行了缩编。 缩编后的内容包括:有限元的基本概念;刚度矩阵.弹簧与杆单元;桁架结构:直接刚度法;弯曲单元;加权余量法:一般单元列式的插值函数:在固体力学中的应用;结构动力学;共8章及3个附录部分。同时给出了目录的中文翻译和英汉对照词汇表。 本教材适用于土木工程、工程力学及机械工程等专业,也可作为工程技术人员的参考书。
本教材主要介绍近年来产生发展的多种智能优化算法。包括为人熟知的遗传算法、禁忌搜索算法、模拟退火算法和蚁群优化算法;近年来已成为研究热点的粒子群优化算法;还有尚待普及的捕食搜索算法和动态环境下的进化计算。书中讨论这些算法的产生和发展、算法的基本思想和理论、基本构成、计算步骤和主要的变形以及数值例子和实际应用。为了方便读者学习,各章之后还附有精选的习题、思考题及相关的参考文献。 本教材是为“智能优化方法”这门研究生课程编写的,可作为系统工程、管理工程、计算机、自动化、人工智能以及其他应用优化算法专业的研究生及高年级的本科生教材,也可供相关专业的研究人员和工程技术人员参考。
郭坤宇编著的《算子理论基础》前3章概述线性泛函分析的基本内容。第四、第五章建立在前3章的基础上,重点讲述算子理论、算子代数的一些基本概念、理论和方法。在第六章,我们综合运用前5章的知识研究3类具体的算子——Toeplitz算子、Hankel 算子和复合算子,这3类算子具有广泛的应用价值。 书中列举了大量的应用实例,并配备了一定数量的习题。 本书内容精炼,叙述简明扼要,可作为数学院系高年级学生和研究生的教学用书或教学参考书,特别可用于算子理论与算子代数方向研究生的入门用书。
本书根据普通高等理工科院校 计算方法 和 数值分析 课程的教学大纲编写而成,重点介绍计算机上常用的典型计算方法和基本理论。主要内容包括数值计算中的误差分析、线性方程组与非线性方程组的解法、矩阵特征值与特征向量的计算、非线性方程求根的方法、数值逼近的插值法与数据拟合法、数值积分与数值微分、常微分方程初值问题的数值解法等。书中内容力求精炼充实、由浅入深,从典型算法与实际问题着手,循序渐进,简洁易懂,便于教学与自学。每章都有较明确简洁的算法与实例,着重训练读者的计算能力,培养读者解决实际问题的方法和创新能力。每章后还配有适量的习题,便于读者掌握和巩固重点内容、算法与基本思想。
本书对于数值计算方法主要方法和原理进行了讨论,主要致力于对数值计算方法的基本思想、理论推导、方法论述、应用分析等深入而详细的探讨。 本书主要内容包括代数插值、样条插值、*逼近、二元函数插值与逼近、数值积分和数值微分、常微分程数值解法、微分方程边值问题数值解法等。
本书以*版Matlab为平台,介绍了数值分析与图形可视化的内容。涉及Matlab介绍、数值分析的数学基础、数值分析在工程、科学和数学问题中的应用以及Matlab绘图等内容。本书重点讲述数值分析的思想和原理并图示其结果,尽可能避免过深的数学理论和过于繁杂的算法细节,有助于读者更有效地利用Matlab的超强功能,来处理科学计算问题。 本书可作为各科学和工程专业本科生或研究生的教材或参考书,也可作为科技人员和计算机爱好者的参考工具书。
本书是为高等理工科院校各专业本科生、研究生开设的 数值计算方法 课程而编写的教材. 全书系统地介绍了现代科学与工程计算中常用的数值分析理论、方法及有关应用,内容包括: 数值计算方法引论、线性方程组的数值解法、非线性方程的数值解法、矩阵的特征值与特征向量的计算、插值法、小二乘法与曲线拟合、数值微积分、常微分方程的数值解法等. 本书取材新颖、阐述严谨、内容丰富、重点突出、推导详尽、思路清晰、深入浅出、富有启发性,便于教学与自学. 为了加强对学生基本知识的训练与综合能力的培养,每章末都配备了小结并精选了相当数量的算法与C语言程序设计上机实例、复习思考题及综合练习题,以便读者巩固、复习、应用所学知识. 书末附有习题答案与提示,可供教师与学生参考.本书可作为高等理工科院校各专业本科生、研究生 数值计算
本书系统地阐述有限单元法的基本原理、数值方法、计算机程序设计技术及其应用。全书共12章,内容包括有限元法预备知识——加权余量法、杆系结构问题、弹性平面问题、弹性空间问题、热传导问题、流体力学问题、动力学问题、板壳结构问题等,重点是有限元法的基本原理和数学公式表达的建立,以及单元插值函数的构造。后以一个线弹性静力学教学程序FEMED为例介绍有限元程序设计,使读者初步掌握有限元编程的基本方法并具备通用程序开发能力。 本书的特点是由浅入深,简明易懂。书中精选了大量例题,通过这些例题,学生可以逐步掌握有限元法的基本理论和方法,特别适合于教学学时偏少的情况。 本书可作为高等院校力学、机械、土木、水利、航空航天等专业本科生和研究生的教材,也可作为其他相关专业科技人员的参考书。
本书以详尽和丰富的资料,全面介绍计算机科学与技术及相关专业所必需的离散数学知识。本书分为4篇。第1篇为数理逻辑,包括命题逻辑和谓词逻辑。第2篇为集合论,包括集合的概念和基本运算、关系和函数。第3篇是代数系统,包括代数系统一般性质和典型的代数系统。第4篇是图论,包括图的基本概念、欧拉图和哈密顿图及特殊图。各篇相对独立而又有机联系,讲解与证明力求严格完整。书中的例题、习题具有一定的典型性,内容深入浅出、通俗易懂,理论上具有完整性和系统性,易于教学,便于自学。 本书适合于不同层次和领域的学生及研究人员,可以作为高等院校计算机科学与技术及相关专业本科生和研究生的教材或教学辅导书目,也可以作为考研和相关专业技术人员的参考书。
有限元法是工程实际中强有力的数值分析方法之一。美国MSC公司研制的MSC.Marc软件是众多有限元通用软件中的杰出代表。本书把有限元理论和MARC实现有机地结合起来,使读者能深入体验有限元理论与MARC软件之间的紧密关联。学习本书不仅可以循序渐进地掌握有限元基本理论,而且可以培养应用MARC软件解决工程实际问题的能力。全书共分8章,第1章介绍有限元的基本知识,第2章介绍MARC软件的基本用法,第3章至第8章分别介绍平面问题、空间问题、空间轴对称问题、杆系结构、板壳问题以及结构动力问题的有限元法,第3章至第8章每章均有用MARC求解相应工程问题的实例。本书特别适合用力学、机械、土木、水利等领域的科技工作者使用MARC软件的工具和参考书,也可作为理工科院校有关专业高年级本科生、研究生及教师学习有限元理论与MARC软件的教材或参考书。