《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
本书共九章,重点通过基础知识讲解、算例剖析和技巧提示,引导读者熟悉GPU并行算法、CUDA Fortran基础知识,进而掌握基于CUDA Fortran的GPU高性能计算应用软件设计方法。其中,第1章介绍相关研究背景;第2~6章介绍基于CUDA Fortran的GPU通用计算基本概念、编程方法与优化原则;第7~9章介绍基于MPI+CUDA的N-S方程数值求解。书中的示例的构思以及分析过程是本书最具价值的部分,读者通过阅读这些内容,对GPGPU技术做到融会贯通、举一反三,只要掌握了这些简单的示例,更复杂的问题也能迎刃而解。在本书的帮助下,读者不需熟悉GPU硬件或者CUDAC(虽然熟悉这两者有助于使用本书)就可完成GPU的学习和使用。
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书是系统地介绍各类多维奇异积分的高精度算法的专著.全书共5章:第1章介绍面型与点型奇异积分(包括弱奇异、Cauchy强奇异、Hadamard超奇异积分)的概念与存在条件及一些基本性质,并介绍各类奇异积分算子的定义和基本性质;第2章简略介绍正常积分的数值方法和加速收敛方法;第3章主要论述一维各类奇异积分与含参数的奇异积分的高精度算法以及各类奇异积分的加速收敛方法,同时给出了外推的稳定性分析;第4章主要论述各类多维奇异积分与含参的奇异积分的高精度算法以及各类奇异积分的加速收敛方法;第3、4章是本书的核心内容;第5章介绍奇异积分与奇异积分算子的渐近展开式.本书取材新颖,算例翔实,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点.
Maple是目前应用非常广泛的符号计算软件之一,它拥有非常强大的符号计算和数值计算功能。本书详细地介绍了Maple的基本功能,包括:数值计算、解方程、微积分计算、向量及矩阵计算、解常微分方程和偏微分方程等,本书深入讲解了Maple编程的基本原理。
《反问题的数值解法(典藏版)》系统介绍了数学物理反问题求解的正则化方法,主要包括适定与不适定问题的基本概念:反问题、不适定性及其与*类算子方程的联系,基于算子广义逆理论的各种推广,几种提高正则解精度和计算效率的迭代正则化方法、离散正则化方法,各种正则化算法的数值实现,带有工程、物理与经济应用背景有启发性的实例,在附录中给出了*近的国内外研究成果和示范性MALAB语言源程序。 《反问题的数值解法(典藏版)》适合于数学专业科研人员、大学教师使用,亦可供从事科学和工程领域中反问题数值计算方法研究的科研人员,高等院校的教师、研究生和高年级大学生参考。
accuracy and stability of numericalalgorithms gives a thorough, up-to-date treatment of the behaviorof numerical algorithms in finite precision arithmetic. it combinesalgorithmic derivations, perturbation theory, and rounding erroranalysis, all enlivened by historical perspective and informativequotations. this second edition expands and updates the coverage of thefirst edition (1996) and includes numerous improvements to theoriginal material. two new chapters treat symmetric indefinitesystems and skew-symmetric systems, and nonlinear systems andnewton's method. twelve new sections include coverage of additionalerror bounds for gaussian elimination, rank revealing lufactorizations, weighted and constrained least squares problems,and the fused multiply-add operation found on some modern computerarchitectures. although not designed specifically as a textbook,this new edition is a suitable reference for an advanced course. itcan also be used by instructors at all levels as a supplementarytext from
《数值分析》介绍了科学与工程计算中常用的数值计算方法及相关理论。内容包括解线性方程组的直接法和迭代法、插值法、函数*逼近、数值微积分、非线性方程(组)的迭代解法、矩阵特征值和特征向量的计算、常微分与偏微分方程数值解法等。其中包含了一些在实际中有重要应用的新方法,如求解超定方程组的小二乘法、求解线性方程组的基于伽辽金原理的迭代法、奇异值分解、广义特征值问题的求解方法等。同时。对数值计算方法的计算效率、稳定性、收敛性、误差估计、适用范围及优缺点也进行了分析和介绍。 《数值分析》可作为高等院校数学系各专业本科生和各类工科专业研究生的教材或教学参考书,也可供从事科学与工程计算的科研工作者阅读参考。
无
本书系统地论述了约束**化中常用的计算方法和新算法,以及这些方法的计算框图和在计算机上实现的计算方案。主要内容包括:二次规划算法、直接法、系列无约束**化方法、容许方向法、简约梯度法、约束变尺度法等。本书取材着眼于方法的实用性和全面性。
《离心叶轮内流数值计算基础》根据作者多年来在叶轮机械与流体力学相关领域的积累和研究成果提炼而成。主要内容包括流体基本属性、基本方程组的推导、网格生成的代数法与微分法、网格量的计算、模型方程的分类及求解特征、差分及其稳定性分析、有限体积法的基本原理、不可压缩N-S方程的离散计算、边界条件的实施、代数方程系统的迭代法、动-静子耦合流动模型与算法,以及并行编程基础等。《离心叶轮内流数值计算基础》注重理论体系的完整、系统和实用性,将抽象的理论与具体实例相结合、数理基础与当前热点相结合,强调研究思路与解决方法的贯通,既可作为教学用书,也可供科研参考。
无
今年是恩师郭柏灵院士70寿辰,华南理X-大学出版社决定出版《郭柏灵论文集》。郭老师的弟子,也就是我的师兄弟,推举我为文集作序。这使我深感荣幸。我于1985年考入北京应用物理与计算数学研究所,师从郭柏灵院士和周毓麟院士。研究生毕业后我留在研究所工作,继续跟随郭老师学习和研究偏微分方程理论。老师严谨的治学作风和对后学的精心培养与殷切期望,给我留下了深刻的印象,同时老师在科研上的刻苦精神也一直深深地印在我的脑海中。 郭老师1936年生于福建省龙岩市新罗区龙门镇,1953年从福建省龙岩市中学考入复旦大学数学系,毕业后留校工作。1963年,郭老师服从祖国的需要,从复旦大学调入北京应用物理与计算数学研究所,从事核武器研制中有关的数学、流体力学问题及其数值方法研究和数值计算工作。他全力以赴地做好了这项工作,为我国
本书的主要内容是讲解工程领域中经常使用的各类数值求解方法。作者Steven Chapra博士执教于塔夫茨大学土木和环境工程系;而作者Raymond P.Callale是密歇根大学的名誉教授,在二十多年的教学中,他曾讲授了计算机、数学和环境工程领域中的多门课程。两位作者在数值分析方面有着深厚的理论根基和广博的实践知识。本书当前是第五版,随着数值方法和计算机的发展,作者不断地更新其中的内容,所以本书是数值方法方面极富价值的教科书,也可以作为广大工程技术人员一本不可多得的优秀参考书。
本书针对各类具有多尺度特性的问题给出简化数学处理方法(平均化和均匀化),该方法可用于求解偏微分方程、随机微分方程、常微分方程以及Markov链。《BR》 全书共分三部分,*部分为背景资料;第二部分为扰动展开,给出此类问题的共性;第三部分阐述了一些证明扰动方法的理论。每章结束部分的讨论和文献目录中均对本章的一些结论进行了推广和扩展,并附上参考文献。除第1章外,所有章节均提供相应练习。
This book is a standard for a complete de*ion of the methods for unconstrained optimization and the solution ofnonlinear equations....this republication is most welcome and this volume should be in every library. Of course, there exist more recent books on the topics and somebody interested in the subject cannot be satiated by looking only at this book. However, it contains much quite-well-presented material and I recommend reading it before going ,to other.publications.
本书系统介绍了线性代数方程组求解和矩阵特征值问题中一些重要的计算方法以及Jacobi矩阵的重要性质和它的特征值反问题.线性代数方程组求解方面的内容包括:共轭斜量法、SYMMLQ方法、极小残量法、GMRES法、对称化方法、QMR法、CGS法、BICGSTAB法、HSS法以及SSS算法等;矩阵特征值问题方面的内容包括:QL方法、Rayleigh商迭代法、分合法、Lanczos方法、QR方法、子空间迭代法、Arnoldi法、Jacobi-Davidson方法以及QZ算法等;Jacobi矩阵方面的内容包括:极值性质、推广的根的隔离定理、Paige公式以及它与Gauss型求积公式的关系等;在Jacobi矩阵特征值反问题方面介绍了三个基本问题:(k)问题、双倍维问题和周期Jacobi阵问题.
本书详细讲述了ANSYS程序在有限元分析中的应用。它先给出有限元分析的一般理论,然后用具体的例子详细说明了有限元分析的基本过程与各种计算环节,后针对具体的问题说明了如何用ANSYS求解。ANSYS是本书不可分割的一部分。本书主要讨论了一维问题、二维问题和三维问题的有限公式的推导及其应用,单元类型包括杆单元、梁单元、平面单元和三维实体单元。本书详细讨论了桁架、梁、框架,热传导及流体问题和三维实体的有限元分析,有关固体力学(包括结构力学)、热传导学和流体力学的基本概念贯穿于全书各章节之中,每一章开头都会讨论相关问题的基础理论,接着给出一些可以手工计算的简单问题,之后再举例说明用ANSYS如何求解。第8章集中介绍了ANSYS的使用方法和用ANSYS做有限元分析的基本过程。本书大部分章节的后都附有一定习题供读者练习。