本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
内容介绍 八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚到余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书*一版荣获国家图书馆第八届文津图书奖。*二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
内容简介 眼睛是人们感知世界的窗口,被称为“心灵的窗户”。然而,眼睛却非常娇嫩,需要人们悉心呵护。 本书用形象的比喻、诙谐幽默的描述向读者传递眼睛的相关知识。首先,阐释了自然界中各种动物的奇特眼睛及真给人类带来的启迪,以唤起读者对眼睛的好奇和兴趣。其次,描述了人类眼睛鲜为人知的“奇闺趣视”,从科学的角度解释日常用眼过程中遇到的一些问题,进一步激发读者不断去探索眼睛的奥秘。再次,用深入浅出的方法,从专业角度介绍眼睛的结构、工作奥秘以及人类眼睛成长与衰老的过程。最后,介绍了眼睛常见疾病的陆治和相 目录 目录总序 / i前言 / iii章 探秘神奇的眼睛 / 001节 动物世界奇特的眼睛 / 002一、视力“动”“静”迥
傅里叶变换在物理学和工程中有着广泛的应用,非常重要.本书简要介绍了傅里叶变换的理论和应用,对物理、电气和电子工程以及计算机科学专业的学生来说很有价值. 本书在简要介绍了傅里叶变换的基本思想和原理后,介绍了它在光学、光谱学、电子学和电信等领域的应用,说明其强大功能.本书还介绍了多维傅里叶理论中一些很少被讨论但非常重要的领域,包括对计算机轴向断层扫描的介绍.本书最后讨论了数字化方法,特别是快速傅里叶变换及其应用. 本书还包括一些新颖、有趣的内容,如正弦卷积、连续性、迈克耳孙恒星干涉仪和Van Cittert Zernike定理、Babinet原理和偶极子阵列等.
本书是与《统计学(第3版)》配套的学习辅导书。统计学作为一门实践性很强、应用范围很广的方法论学科,只有勤思多练,通过对各种类型习题和实际资料做富于思考性的练习与分析,才能真正领会统计思想,深刻理解和掌握统计学的基本原理、基本技能与基本方法。 为了帮助大家更好地学习和把握这门课程,我们针对统计学教材,根据多年的教学实践,编写了这本学习辅导书。本书包含“本章学习目的要求”“基本知识梳理”“重点难点点拨”“范例解析”和“练习与实践”五个方面内容,旨在引导学生思考、贴近实际,并设计了Excel计算结果输出分析题,有利于提升统计知识的应用与实践能力。 本书可作为经济类和管理类非统计专业本科生的统计学课程教材,也可作为统计学专业本科生的统计学入门教材,还可作为广大经济管理人
有限群理论是研究对称性的重要数学基础,在理论物理、量子化学、晶体学、计算机编码、量子通信、信息加密等领域有重要应用。本书介绍了作者在有限群构造领域的主要研究成果。为了便于读者阅读,本书详细介绍了有限群论的基本概念、基本定理及其证明,内容是自封的。主要内容为:群的基本知识,群的作用,有限幂零群与超可解群,阶为p2q2,pq3,p2q3,p3q3 的有限群的完全分类(这里p,q 是不同的素数)。本书可以作为理工科专业高年级本科生、研究生参考用书,也可以作为自然科学工作者的参考读物。
本书不仅详细叙述了拓扑线性空间,包括若干子类局部凸空间、赋范空间、内积空间的公理系统、结构属性及其之上的强弱拓扑、共轭性,还深入论述了该学科离不开的几个专题,即形式上更为一般的三大基本定理与泛函延拓定理, Banach代数特别是Gelfand变换的基本理论,紧算子及其谱理论,自伴算子的谱理论,无界正常算子的谱理论以及Bonsall的闭值域定理,不变子空间的Lomonosov定理等;而且给出了以上基本理论的丰富多彩的应用,包括完整的关于广义函数、Fourier变换及其偏微分方程基本解的论述,对于Tauber型定理的应用,von Neumann的平均遍历定理,算子半群的Hille-Yosida定理并应用于发展方程等。
理解数学需要具备一种纯粹的感觉,即 数感 。本书为日本数学家、菲尔兹奖与沃尔夫奖得主小平邦彦先生的思想随笔文集,书中收录了小平邦彦先生对数学、数学教育的深思、感悟文章,记述了数学家对 数学 数感 的独到理解,文笔幽默,深入浅出。同时,书中还辑录了小平邦彦先生在普林斯顿高等研究院时期,与赫尔曼?外尔等数学大家交流的趣闻轶事,对深入理解数学、数学教育具有深刻启示。
当今的数学是2000多年来数学家的智慧和努力的结晶,他们的个性和生活经历往往与他们的数学成*一样非凡。本书通过50篇简短的传记,按照年代顺序记录了这些成*。 在书中所描述的这些令人神往的人物中,艾萨克·牛顿较为人引注目,他是物理学和微积分的奠基人,经常与科学家同行发生争吵,并且沉迷于炼金术。苏菲·热尔曼曾以一名以前注册过的男生的名字秘密地在巴黎高等理工学院学习,她因在费马大定理和弹性理论方面的工作而为人们所铭记。艾米·诺特被阿尔伯特·爱因斯坦描述为数学史上重要的女性,她为抽象代数的发展做出了重要贡献。在物理学方面,她阐明了守恒定律与对称性之间的联系。斯里尼瓦瑟·拉马努扬来自印度,出身卑微,几乎没有接受过正式的数学训练,却对数学分析、数论无穷级数和连分数做出了重大贡献。另外,书中还介绍
本书是解读望月新一“跨视宇Teichmüller理论(IUT理论)”的通俗读本。作者将望月的论文及构想,转化为一般读者也能读懂的语言,创作了这本“IUT理论”的解读手册。书中侧重解读“IUT理论”的思考脉络及其对现代数学体系的重大意义,同时也展示了数学家的思考方法,是一本兼具前沿数学理论知识与*数学思维方法的科普佳作。本书适合作为数学研究人员、数学爱好者了解“IUT理论”的入门读本,也适合作为学生了解数学思考方法的参考读物。
在了解这个世界的过程中,现实经常会挑战我们的感官和直觉,让我们震惊不已。这时,数学*像一把雨伞,当撑开这把雨伞时,我们仿佛进入了一个奇特的境界,有了迈向真相、行走在谜团中的勇气;当收起这把雨伞时,我们会发现自己的认知已大不一样,所谓的“理所应当”和“显而易见”将被摒弃,现实背后隐藏的真相将带来巨大的启发。这*是数学的力量。 从代数、几何到相对论,从温度计到黑洞,作者用简洁而生动的笔触阐释了如何更好地思索、观察与理解世界。让我们带上好奇心,撑开数学这把大伞,在宇宙的奥秘中漫步,体会解开疑惑后,如雨过天晴般的愉悦。
作者从三个方面:数、数与式的运算、数学学科阐述了数学概念的来源,以丰富的史料和通俗易懂的语言,通过图文并茂的形式,展示了数学主要概念产生的缘由与发展的历程。之所以写这本书,是因为数学概念是数学的核心内容,数学概念的教学与学习十分重要。但是,数学概念的教学与学习不能成为死记硬背的教条或单纯演算的训练,这样无助于对数学的理解,也无助于培养独立思考能力。教师和学生应该知道数学概念是从哪里来的,又是怎样演化和完善的。要知道,一个数学概念的形成往往需要一个过程,有时是一个极其复杂的过程。这个过程正是数学发展的过程,了解了这个过程可以使人们更加走近数学,正确认识数学;会让我们感到数学是活的东西而不是死板的玩意;进而开拓思维,激发兴趣,更好地学习数学。
八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚至余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书第一版荣获国家图书馆第八届文津图书奖。第二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区块链的数学基础,量子通信的原理,以及人工智能的数学极限。
以上ISBN信息均为平台自动生成,部分商品参数可能存在些许误差,商品准确参数详情可咨询客服。本店为新华书店总部直营店铺,所售图书均为正版,请放心购买! 基本信息 书 名 数学之美 第三版 出版社 人民邮电出版社 作 者 吴军著 出版时间 20200501 I S B N 9787115537973 定价 69 开 本 小16开 152*228 装 帧 平装 版 次 3 字 数 317 (千字) 页 数 340 读者范围 一般读者
内容简介: MBA联考综合试卷数学部分历年真题解析。主要内容是将所属于同一考点之下的真题进行归类编排,并进行详细解析,总结考点情况,阐述命题规律,然后举一反三,编写适量模拟试题,对试题进行解析,以达到掌握考点的效果。
本书分试题册和解析册两册,由微积分、概率论、线性代数三部分组成,严格按照新公布的经济类联考数学考试大纲编写,内容分为九章。1000题选题的题型、格式和难易程度与真题保持高度一致。本书题量丰富,题目精心选编,更好更全面的诠释经济类联考数学考试的内容、基本题型、重要知识点的内涵和延伸,为考生备考助力。
本书是针对考研数学复习的强化阶段和冲刺阶段所编写的八套模拟题,编者严格依据《2019年全国硕士研究生入学统一考试数学考试大纲》、认真分析和研究今年考研命题方向精心选题编撰。本书题目覆盖考研数学的重要知识点和常考题型,为广大考生提供全方位、系统化的考前训练,帮助考生对复习效果进行有效自我检测,强化对重要原理的理解和方法的灵活运用。
《考研数学基础解析120讲》是作者在多年辅导教学的讲义基础上,为帮助大学非数学专业本科生复习公共数学基础课程和准备参加全国硕士研究生招生考试而编写的辅导教材.本书将“高等数学”分为60讲,“线性代数”分为30讲,“概率论与数理统计”分为30讲,共计120讲.各讲内容配备的典型例题经过作者仔细斟酌挑选,具有针对性,尽量做到例题的命题角度巧,角度比较新,难度把握准.各讲后面均配有能力训练题,题的设计严谨、独特,与典型例题一脉相承,有些题是作者多年的积累和根据考试的命题特点自己进行命制的,题量不大,基本是十道题以内.对于有一些难度的习题,给出了比较详细的解答过程,但希望考生在自己练习时要勤思、多思、总结,要努力提升自身的能力。
《考研数学三部曲之大话线性代数》是一本独特的线性代数参考书,以“盖楼”为目标轻松构筑整个线性代数体系。读者每阅读完一章,就是盖完了大楼的一层,而每层中又分为“砖”和“房间”两部分,先运来“砖”再搭建“房间”,这种安排内容的方式使得全书充满了趣味性。 《考研数学三部曲之大话线性代数》的特色除了趣味性之外,还有三个“非常”:语言非常通俗易懂,逻辑非常清晰,例题非常丰富。 本书的主要内容包括高等院校线性代数课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点以及被忽视的一些潜在要点做出了全新诠释,另外,由于作者常年从事考研培训,本书还包括相当多的不传之秘——考研数学的套路。 本书作者就职于著名培训机构,本书正是多年培训生涯的总结,毫无保
《考研数学三部曲之大话概率论与数理统计》是一本独特的概率论与数理统计参考书,以“盖楼”为目标轻松构筑整个体系。读者每阅读完一章,即盖完了大楼的一层,而每层中又分为“砖”和“房间”两部分,先运来“砖”再搭建“房间”,这种安排内容的方式使得全书充满了趣味性。 《考研数学三部曲之大话概率论与数理统计》的特色除了趣味性之外,还有三个“非常”:语言非常通俗易懂,逻辑非常清晰,例题非常丰富。 《考研数学三部曲之大话概率论与数理统计》的主要内容包括高等院校概率论与数理统计课程的所有内容,针对考研数学的特殊性进行了强化,同时对于一些传统课本中的重点、难点、疑点,以及被忽视的一些潜在要点做出了全新诠释,另外,由于作者常年从事考研培训,本书还包括相当多的不传之秘——考研数学的套路。 《