本书致力于中考数学命题的研究,旨在帮助学生在中考中获得高分和满分,同时也供其他教学人员学习和参考之用.本书内含各种类型数学中考压轴题,内容全面实用.总结常用几何辅助线与常见几何模型,帮助考生在考试中快速找到解题的突破口;归纳各种函数压轴题题型,帮助考生了解命题的意图,顺利扫清思维障碍,获得满意答案.本书还总结了各种实用的解题技巧,简单高效.部分题目一题多解,拓展学生的思维.
本书是北京市本运用解题理论、采用 编年体 形式对中考数学压轴题的应试策略、分析方法和解题思路进行透彻解析的专业书籍。 对于中考解答题中的几何综合题、新定义综合题、代数综合题,以及操作与实践、推理与探究等以 生成性资源 为背景的解答题,选用能反映命题趋势的经典试题,进行深入解析,注重解题经验的传授与解题能力的提升,帮助考生养成科学的数学思维习惯。同时以微专题的形式兼顾选择题和填空题中的压轴题。 本书可作为初中生中考冲刺用书,亦可作为命题专家、教研员、一线教师和教育界相关人士研究北京中考数学压轴题的参考书籍。
Riemanniageometry is characterized, and research is oriented towards and shaped by concepts (geodesics, connections, curvature, ...) and objectives, iparticular to understand certaiclasses of (pact) Riemanniamanifolds defined by curvature conditions (constant or positive or curvature, ...). By way of contrast, geometric analysis is a perhaps somewhat less systematic collectioof techniques, for solving extremal problems naturally arising igeometry and for investigating and characterizing their solutions. It turns out that the two fields plement each other very well; geometric analysis offers tools for solving difficult problems igeometry, and Riemanniageometry stimulates progress igeometric analysiy setting ambitious goals. It is the aim of thiook to be a systematic and prehensive introductioto Riemanniageometry and a representative introductioto the methods of geometric analysis. It attempts a synthesis of geometric and analytic methods ithe study of Riemanniamanifolds. The present work is the s