SQL是使用*广泛的数据库语言,绝大多数重要的 DBMS 支持 SQL。本书由浅入深地讲解了SQL的基本概念和语法,涉及数据的排序、过滤和分组,以及表、视图、联结、子查询、游标、存储过程和触发器等内容,实例丰富,便于查阅。新版对书中的案例进行了全面的更新,并增加了章后挑战题,便于读者巩固所学知识。
本书是一本基于 Python 实现全部例题计算的统计学教材,书中例题解答均给出了详细的实现代码和结果。全书共 11 章,第1章和第2章介绍数据、Python 的下载与安装、Python的数据类型和基本操作、Python 绘图基础等。第3章和第4章介绍数据的描述性分析方法,包括数据可视化和描述统计量。第5~7章介绍数据的推断性分析方法,包括概率分布、参数估计和假设检验。第8~11章介绍实际中常用的一些统计方法,包括类别变量分析、方差分析、回归分析、时间序列分析等。 本书可作为高等院校各专业开设统计学课程的教材,也可作为数据分析工作者、Python 数据分析和可视化爱好者的参考书。
本书是畅销书《SQL基础教程》第2版,介绍了关系数据库以及用来操作关系数据库的SQL语言的使用方法。书中通过丰富的图示、大量示例程序和详实的操作步骤说明,让读者循序渐进地掌握SQL的基础知识和使用技巧,切实提高编程能力。每章结尾设置有练习题,帮助读者检验对各章内容的理解程度。另外,本书还将重要知识点总结为 法则 ,方便读者随时查阅。第2版除了将示例程序更新为对应*的DB的SQL之外,还新增了一章,介绍如何从应用程序执行SQL。
《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,更加适合作为国内高校计算机及相关专业本科生数据库课程教材。
本书由一线数据分析师精心编写,通过大量案例介绍了数据分析工作中常用的数据分析方法与工具。本书包括5章内容,分别是数据分析入门、数据分析 从玩转Excel开始、海量数据管理 拿MySQL说事儿、数据可视化 Tableau的使用、数据分析进阶 Python数据分析。本书通俗易懂、通过大量贴近企业真实场景的案例,帮助读者在提高数据处理技能的同时加深对数据分析思维的理解。 本书适合有志于从事数据分析工作或已从事初级数据分析工作的人士自学,也可作为产品经理、运营人员、市场人员、对数据分析感兴趣的企业高管以及创业者的参考用书。
本书从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和 新的课题——数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘。本书是数据挖掘和知识发现领域内的所有教师、研究人员、开发人员和用户都的一本书。
SQL是使用最广泛的数据库语言,绝大多数重要的DBMS支持SQL。本书由浅入深地讲解了SQL的基本概念和语法,涉及数据的排序、过滤和分组,以及表、视图、联结、子查询、游标、存储过程和触发器等内容,实例丰富,便于查阅。新版对书中的案例进行了全面的更新,并增加了章后挑战题,便于读者巩固所学知识。
本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以系统化的实操步骤和丰富的实际案例让读者快速入门Power BI数据分析,掌握Power BI在多个业务领域的实际应用。全书共8章:商业智能与数据分析概述;Power BI简介;数据分析与可视化制作全过程;Power BI数据预处理;Power BI数据建模;Power BI数据可视化;Power BI在线服务;Power BI数据分析实战案例。 本书通俗易懂、循序渐进、内容全面、讲解详细,配备全套数据集、教学课件和学习视频,既适合读者自学Power BI数据分析与可视化,也适合大专院校作为教材,更适合从事销售、产品、电商运营、仓储物流、财务管理、人力资源等岗位的职场人士提升技能。
本书与以往统计学中的概率论略有不同,添加了一些复杂数据类型的概率基础知识和模拟计算中的相关概率知识。具体安排如下所述。本书共分6章。第1章为概率与计数,基本内容是随机事件、概率空间、计数方法、概率的确定方法。第2章为条件概率,基本内容是条件概率与乘法公式、事件的独立性、全概率公式与贝叶斯公式。第3章为随机变量,基本内容是随机变量及其分布函数、随机变量的分类、二维随机向量、随机变量的独立性、随机变量函数的分布。第4章为常用的概率分布,基本内容是常用的离散型随机变量、常用的连续型随机变量、随机数的产生。第5章为随机变量的数字特征,基本内容是数学期望、方差和协方差、矩和矩母函数、条件期望。第6章为不等式和极限定理,基本内容是概率不等式、大数定律及其应用、中心极限定理。
数据是数字经济的关键生产要素与核心资源。数据要素市场的培育是一个动态演化和持续迭代的过程,而信任的建立是市场建设的关键一步。本书通过“信任”这一视角,对数据流通进行全方位的解读,对中国数据要素市场的建设实践进行回顾与展望。基于“TIME”分析框架,对数据可信流通技术、数据流通机构、可信的数据流通模式以及促进数据可信流通的治理方案进行全面系统的介绍。本书旨在为数据要素市场参与者、数字经济从业者、数据治理人员以及关注数据流通交易的读者提供实用的参考,帮助他们理解数据流通的可行模式,破解数据要素市场发展难题,充分释放数据要素流通潜力,赋能实体经济高质量发展。
本书是一本系统介绍Clickhouse的指导型工具书,全书总共分为11章: 第1章 介绍ClickHouse的由来、发展历程、核心特点与核心特点。第2~6章 介绍了ClickHouse基础使用部分,包括整体架构、如何安装、数据定义、数据引擎、数据查询和函数的特性和使用方法。第7~9章介绍了ClickHouse高级特性部分,包括数据库管理操作,数据分片、数据副本和高可用的特性和使用方法。第10~11章介绍了如果自己手动实现ClickHouse中间件的思路和示例,同时也介绍了几款可视化工具与ClickHouse集成的方法。
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
内容介绍 本书从业务、数据、运营3个维度为电商的经营和决策提供了科学的方法论,是一部电商运营真经,真正做到了“业务中有数据,数据中有运营”。作者是资深的电商行业专家,从事电商数据分析与数据化运营10余年,本书是他在多个知名电商品牌操盘多个千万级项目的经验总结。 为了增强本书的趣味性和读者的角色代入感,本书采用了纪实和叙事的写作手法,书中虚拟了3个核心人物: ?Alex:临危受命、勇挑重担、运筹帷幄的BI部门经理(资深数据分析师)。 ?叶子:有电商行业从业经验但是不懂数据分析的业务员。 ?大白:从其他行业转型到电商行业的数据分析师。 全书有两条主线: ?暗线:叶子和大白在Alex的指导和帮助下成长为“精业务、精数据、精运营”的“三精”数据分析师的经历,这对数据分析师的职业规划和成长有重要借鉴意义。 ?明线:Alex将
部分(第1~4章)为基础和背景部分,主要介绍数据分析挖掘和数据化运营的相关背景、数据化运营中“协调配合”的本质,以及实践中常见分析项目类型的介绍。第二部分(第6~13章)是数据分析挖掘中的具体技巧和案例分享部分,主要介绍实践中常见的分析挖掘技术的实用技巧,并对大量的实践案例进行了全程分享展示。第三部分(第5章,第14~19章)是有关数据分析师的责任、意识、思维的培养和提升的总结和探索,以及一些有效的项目质控制度和经典的方法论介绍。
本书通过选购笔记本电脑的案例引入数据包络分析(dataenvelopmentanalysis,DEA)的基本概念和模型,并运用简单的EXCEL模型让读者更易理解和运用DEA。本书着重阐述如何将DEA作为一种运营分析工具,进行绩效评估,找出基准标杆。探讨的主题包括:平衡的基准,昀佳实践,相对效率的概念及绩效提升。特别地,本书探讨的数据分析方法能够帮助一个组织重新审视它对生产效率高低的已有观点是否合理,并为组织不断改进提供指导。本书是市面上唯一本不要求读者具备线性规划和线性代数知识,就可以熟练应用DEA方法的DEA方法指导用书。
Power BI是微软推出的商业智能分析工具,它融合了数据准备、数据分析、数据可视化到报告协作分享的整个数据处理流程,帮助用户上手数据分析。 本书从实用的角度出发,结合作者本人的学习经验,从*基础的Power BI架构和操作界面开始,先通过一个小示例体验Power BI的强大和便捷,然后按照数据处理的流程和难易程度,分别介绍数据准备模块Power Query、数据建模以及Power BI数据分析语言DAX、可视化图表制作、丰富的交互方式和报表设计,*后用一个完整的分析示例带读者全面认识Power BI数据处理流程。 不论读者是学生、职场人士还是自由职业者,不论从事的领域是运营、财务、人力、管理还是电商,只要在平时的学习和工作中需要处理大量信息,分析各种数据,你就适合阅读本书学习Power BI,即使之前没有任何基础,它也可以帮你快速上手,提升自身竞争力。
数据库技术自从上世纪60年代诞生以来,经历了网状数据库、层次数据库等发展阶段,zui终在80年代确立了关系数据库技术的主导地位。关系数据库技术经过几十年的发展,在各行各业都取得了巨大的成功。但是,进入21世纪后,随着互联网、物联网、云计算等技术的快速发展,传统的关系数据库技术由于在可扩展性、灵活性等方面存在的不足,难以支持层出不穷的新型应用。在此背景下,键值数据库、文档数据库、列存储数据库、图数据库等新型数据库技术因运而生。本书与现有的介绍关系数据库技术为主的书籍不同,重点介绍当前数据库领域中出现的各类新型数据库系统的概念、基础理论、关键技术以及典型应用。在理论方面,本书除了介绍各类新型数据库系统中基本的理论和原理之外,还将侧重于对这些理论的研究背景和动机进行讨论,使读者能够了解新型数
本书包括导论以及对齐(Align)、细化(Refine)、设计(Design)三章。通过将业务术语、逻辑和物理三个建模层次重命名为对齐、细化、设计,在名称中包含了该层次所做的工作。 导论介绍了数据模型的三个特征 精确性、最小化和可视化;数据模型的三个组件 实体、关系和属性;数据模型的三个层次 业务术语(对齐)、逻辑(细化)和物理(设计),以及数据建模的三个视角 关系、维度和查询。第1章对齐是关于通用业务术语的,以便每个人都能在术语和总体计划范围上保持一致。第2章细化是关于搜集业务需求的,即完善我们对项目的了解,专注于关键业务要点。第3章设计是关于技术需求的,即针对独特软硬件需求进行模型设计。 对齐、细化和设计,这就是本书遵循的方法,并通过 宠物之家 案例对概念加以强化。本书适合需要将建模技能扩展到MongoDB的数据
随着物联网、云计算、大数据与人工智能等技术的蓬勃发展,计算服务逐渐从计算密集型向数据密集型(Data Intensive)转变。高性能、高通量的数据服务关键技术成为智慧城市、智能制造、智慧农业等国家重大需求解决方案的核心基础。并行与分布式数据处理的概念启发于上世纪80年代,源自讨论在内存及二级存储极为有限的条件下如何跨越 内存墙 ,完成计算任务的优化技术。而今,互联网与私有网络数据指数级增长、数据服务的事务性需求复杂多变、跨地域数据同步需求动态不统一、如何应对当前及未来大数据服务及其上的人工智能计算对并行与分布式数据服务提出了新的问题与挑战。本书从并行与分布式数据服务的基础理论、事务模型、数据处理语言等基础内容,并进一步讨论分布式数据一致性模型及全观性的数据处理架构方面的先进及实用的研究及系统软件
数据湖仓是一个现代化的开放式架构,拥有当今热门的开源数据技术的广度和灵活性。本书从初学者的角度出发,通过对数据湖仓重要概念的剖析,对数据湖仓的相关知识进行深入浅出的讲解。全书共18章,对数据湖仓的基础知识、数据工程、业务价值、数据集成等方面进行深入探讨,同时展望数据架构的演化趋势,使读者能够领会数据湖仓的精髓,最终轻松、全面地管理数据湖仓项目。 本书适合数据架构师、业务人员和系统开发人员,以及对数据管理、数据分析感兴趣的读者阅读。