当今社会,大数据技术已广泛应用于各行各业,大数据相关的存储和分布式计算等基本知识也成为了时下大学生尤其是计算机相关专业学生应具备的常识。本书在内容上去繁就简,重点介绍大数据的相关基本概念和原理,包括存储原理和分布式处理的原理。本书主要围绕Hadoop大数据处理平台(第2章),介绍其中涉及的HDFS(第3章)、HBase(第4章)等存储技术和Hadoop MapReduce分布式处理技术(第6章);介绍了大数据相关的存储技术NoSQL数据库(第5章)以及数据仓库技术Hive(第7章);并对新兴的大数据平台Spark(第8章)以及其他流行的大数据技术(第9章)进行了介绍。 本书适合计算机专业的低年级学生作为大数据入门课程的教材或者其他专业学生的大数据课程教材。
本书借助大数据技术、统计学方法、人工智能技术对社会热点事件展开情感实证分析。以技术为主、分析为此、情感为辅。通过先进的技术分析情感的发展。本研究以微博平台作为切入口获取情感挖掘的大数据来源,通过构建一个较为全面的社会性事件情感分类词典,对社交网络中微博用户情感进行挖掘与可视化。通过对公众情感类型的多维度解析,从情感传播环境、情感传播方式、社会网络结构和用户行为模式四个方面探索社交网络中的舆情传播特征,由此提出合理引导网络舆情的相关对策建议。
本书的主要内容包括金融工程导论、金融工程定价方法及其R语言函数计算、远期合约及其R语言函数计算、期货合约及其R语言函数计算、期货套期保值及其R语言函数计算、互换合约及其R语言函数计算、期权合约及其策略、Black Scholes期权定价方法及其R语言函数计算、蒙特卡罗模拟法期权定价及其R语言函数计算、二叉树法期权定价及其R语言函数计算、有限差分法期权定价及其R语言函数计算、利率衍生证券及其R语言函数计算以及奇异期权及其R语言函数计算,本书的后提供了关于R语言的两个附录。本书内容新颖、全面,实用性强,融理论、方法、应用于一体,是一本供金融工程、金融数学、计算金融、量化金融、投资学、金融学、保险学、金融专业硕士、经济学、统计学、数量经济学、管理科学与工程、应用数学、计算数学、概率论与数理统计等专业的本科高年级
本书从整体上进行了改编、扩展和提升。主题内容也有所延伸,其中包括数据的类型与域、表的比较、映像关系、聚集操作符与汇总、视图更新以及子查询。还特别收录了一个新附录——NoSQL与关系理论。本书涵盖以下内
随着中台概念被广泛讨论,其中数据中台又被赋予担任企业智能化任务的重任。当前,不仅是大企业,很多企业都在开始打造或者引入中台,用来解决企业面临的系统重复建设与数据孤岛的问题,在这个过程中,中台产品经理需要做什么事,解决什么问题,又会遇到怎样的困难与挑战? 本书~2章讲解了中台起源与数据中台产品需要什么样的能力;第3~6章主要讲解中台中的数据中台的建设与规划、数据分析的方法与策略、数据体系建设方法与应用和企业数据的价值等;第7~9章主要讲解数据平台的需求分析与数据知识、系统平台的建设实战和用户画像体系的建设等内容。
本书分12章重点阐述了数据管理的重要性,数据管理面临的挑战,DAMA的数据管理原则,数据伦理,数据治理,数据生命周期管理的规划及设计,数据赋能和数据维护,使用和增强数据,数据保护、隐私、安全和风险管理,元数据管理,数据质量管理,以及现在应该怎么办,能够帮助企业管理层在了解和执行数据管理的过程中不致迷失在技术术语的迷宫之中。本书可供非数据专业人士、企业管理者、数据行业研究者等读者学习和参考。
该书基于通用的Excel、 SPSS工具, 加上必知必会的数据分析概念, 以图文并茂、 理论与实操相结合的方式, 按照CDA人才培养考核要求进行编写。全书分为6章, 分别为数据分析概述、 数据收集与导入、 数据的清洗与预处理、 数据可视化呈现、 基础数据分析、 综合分析。本书适合数据分析零基础群体读者阅读, 也可供大学生、 初入数据分析职场人员、 参与CDA考试的人员学习使用。