数据分析是现在不仅在互联网行业同时也在基础行业中必不可缺的运营手段,是业务提升效率、增强收益的有效方法。 本书的前8个章节精选提炼了多种数据分析中重要方法,包括ROI分析、数据标签和评分、用户生命周期、因果推断、可解释模型、PSM理论、ABtest、时序分析等,并通过更清晰、简单的方式向读者全方位的展示数据分析在以下诸多原理上的阐释,并且针对每种方法都提供了充足的生活和业务中的前沿案例作为辅助讲解,帮助读者更好的理解数据分析在传统行业、互联网行业及各类新兴行业的实际应用,同时也能更快的运用在实际工作和生活中,所以通过阅读前8个章节,读者可以系统的学习数据分析的理知识,拥有数据化思维,为读者能够在数据分析行业中不断深耕打下良好的理论基础并将数据分析能力逐步应用于实际的工作和生活中,成为一名合格的
本书介绍了柴油发电机组的分类、组成和工作原理,分析了柴油发电机组的功率标定和技术指标, 重点讨论了不同性质负载对柴油发电机组带载能力的影响,详细介绍了柴油发电机组供电方案的电源架 构和运行方式以及柴油发电机组的运维保养方法。此外,还介绍了机房安装的柴油发电机组和集装箱式 柴油发电机组的设计、安装的相关知识。 本书力求理论性和实践性相结合,书中所列的柴油发电机系统的供电方案及运维保养方法对当前主 流的数据中心柴油发电机系统普遍适用。本书是数据中心柴油发电机系统运维工作流程的指导性教材, 相信阅读本书一定会对数据中心柴油发电机系统运维管理从业人员大有裨益。
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。而数据模型是构建应用系统的核心,是尽可能精准地表示业务运转的概念性框架。本书通过平实的语言,对数据模型及建模过程进行了深入浅出的介绍。全书内容分为5个部分,对数据建模简介、数据模型要素,概念、逻辑和物理数据模型、数据模型质量以及数据建模的进阶内容等方面进行讲解,全面细致地为读者解答与数据建模相关的知识点和疑问。除此之外,本书的zui后还对各类专业术语进行了细致的解释,方便读者参考。本书是一本经典的数据建模指南,非常适合对数据建模感兴趣的读者以及从事数据科学等相关工作的专业人士参考阅读。
互联网公司里面几乎很少有公司不用MySQL,国内互联网巨头都在大规模使用MySQL。如果把MySQL比喻成数据库界的一条巨龙,则性能优化和高可用架构设计实践就是点睛之笔。本书将详细讲解 MySQL 5.7高可用和性能优化技术,细致梳理思路,并与真实生产案例相结合,通过原理阐述到实战部署,帮助读者将所学知识点运用到实际工作中。 本书分为13章,详解MySQL 5.7数据库体系结构,InnoDB存储引擎,MySQL事务和锁,性能优化,服务器全面优化、性能监控,以及MySQL主从复制、PXC、MHA、MGR、Keepalived 双主复制等高可用集群架构的设计与实践过程,并介绍海量数据分库分表和Mycat中间件的实战操作。 本书既适合有一定基础的 MySQL数据库学习者、MySQL数据库开发人员和 MySQL数据库管理人员阅读,同时也能作为高等院校和培训学校相关专业师生的参考用书。
对数据生产和大数据处理带来的挑战,是当代社会和人工智能时代的重点。大数据的快速发展、信息共享和社交媒体的大众化带来了各方面的风险和挑战。我们需要遵循正确的流程、方法和沟通战略 且手头的数据必须准确,才能推演出高价值的结论。而数据越多,我们面临的陷阱可能就越深。在本书中,杰森?辛克从数据通用和收集的策略、数据分析的准则、数据展示的策略出发,讨论了应对数据挑战、获得和洞察数据的价值和内涵的可行方式。
对于入门和学习大数据技术的读者来说,大数据技术的生态圈和知识体系过于庞大,可能还没有开始学习就已经陷入众多的陌生名词和泛泛的概念中。本书的切入点明确而清晰,从Hadoop 生态系统的明星 Cloudera 入手,逐步引出各类大数据基础和核心应用框架。本书分为18章,系统介绍Hadoop 生态系统大数据相关的知识,包括大数据概述、Cloudera Hadoop平台的安装部署、HDFS分布式文件系统、MapReduce计算框架、资源管理调度框架YARN 、Hive数据仓库、数据迁移工具Sqoop、分布式数据库HBase、ZooKeeper分布式协调服务、准实时分析系统Impala、日志采集工具Flume、分布式消息系统Kafka、ETL工具Kettle、Spark计算框架等内容,*后给出两个综合实操案例,以巩固前面所学的知识点。本书既适合Hadoop初学者、大数据技术工程师和大数据技术爱好者自学使用,亦可作为高等院校和培训机构大数据
《物联网之云:云平台搭建与大数据处理》为 物联网工程实战丛书 第4卷。《物联网之云:云平台搭建与大数据处理》阐述了云计算的基本概念、工作原理和信息处理流程,详细讲述了云计算的数学基础及大数据处理方法,并给出了云计算和雾计算的项目研发流程,展望了云计算的发展前景。 《物联网之云:云平台搭建与大数据处理》共10章。第1章介绍了物联网数据分析中的一些数学基础、概率论和数理统计方法,以及分布式计算、网格计算和云计算方法,及其在物联网中的应用;第2章给出了云计算的概念和原理,并针对云计算的一些技术和体系架构做了详细介绍;第3、4章阐述了云计算平台的建设,重点阐述了PaaS平台的搭建流程及其针对智慧城市和垂直行业的云平台搭建实战;第5、6章阐述了大数据概念及大数据处理的常见数学方法;第7章阐述了物联网云计算
全书内容包括SQL Server 2016的安装和操作、数据库的基本认识、表的定义和操作、数据查询和更新、视图的定义和维护、存储过程的创建、事务和锁、触发器、数据完整性、数据导入和导出、数据库还原技术、用户管理技术、数据库综合设计和实现等。为了使初学者轻松地进行学习和操作,本书在每个章节有针对性地设置了与实际生活相关的示例,帮助读者更好地理解相关概念,同时也帮助其掌握软件的操作方法。介绍了数据库基本概念的理解、SQLServer数据库管理系统的认识,数据库定义、数据操作、数据库管理维护、数据库的综合应用、以及数据库的应用开发。
本书以单一功能模块和完整系统开发应用为主线,介绍了使用当前流行的网络数据库系统开发技术进行应用程序开发的全过程。所采用的单一功能模块和完整系统开发案例的编排方式是一种新的尝试,这样可满足不同层次读者的需求。单一功能模块可以作为网络数据库系统开发技术应用的子模块,也可以用于综合项目实践。
本书是一本系统介绍大数据可视化技术的图书。书中首先阐述了大数据的可视化技术的基本概念以及相关的基础理论知识,然后采用理论与实践相结合的方式,针对实际应用中的各种不同类型的数据,包括时间数据,比例数据,关系数据,文本数据,复杂数据,介绍相应的可视化理论和操作方法,*后,介绍了数据可视化在各个领域中的应用。本书实例丰富,图文并茂,叙述简明,重点突出。作者专门收集和整理了相关的课程案例、典型数据和实验指导手册,帮助读者深入学习大数据可视化中的各种技术知识。本书可以作为高校计算机、数据分析、大数据等相关专业学生的教学用书,对于从事数据可视化、数据分析的技术人员也有较大的参考价值。
本书从新时代商业环境出发,紧随市场热点,如分布式自治组织(distributed autonomous organization,DAO)、非同质化通证(non-fungible token,NFT)、元宇宙、Web 3.0 、资产 数字化、反垄断、要素市场化配置等,以企业数字化转型为核心,以区块链等数字化技术 为基本点,以场景为基本面,勾勒了数字化时代分布式商业演化的新趋势,以及其对企业 经营管理的影响,提出了数字化时代企业数字化转型的新策略和分布式经营管理的低成 本、高效率发展方案。 本书全面分析了分布式商业产生的背景及其本质内涵,认为分布式商业是未来商业演 化的必然趋势。分布式商业生态战略不但是未来企业生存的基本战略,而且是元宇宙商业 生态建设的底层逻辑,并将Web 3.0 、DAO、NFT、元宇宙等新兴事物融入分布式商业生 态体系中,深度解读了数字化时代的新商业逻辑和战略思维。同
本课程的教学内容主要包括聚类、关联、降维、变量选择、分类与预测、集成算法、图模型与推荐系统等。每一部分都是本课程授课的主要内容,都力求深入浅出,精讲细讲,不光讲解各种方法的过程与原理,还要加强学生对各种方法的深入理解。
本书涵盖大数据专业经典的40个实验,每一个实验给出具体的目的、要求、原理,并给出详细的实验步骤和试验程序。具体包括HDFS实验、YARN实验、MapReduce实验、Hive实验、Spark实验、ZooKeeper实验、HBase实验、Storm实验等等。
中国大数据专家委员会刘鹏教授联合全国上百家高校从事一线教学科研任务的教师,一起编撰高级大数据人才培养从书。本书是丛书之一,其定位是大数据挖掘技术与应用。本书系统地介绍了数据挖掘算法理论与方法、工具和应用,包括经典数据挖掘算法,大数据环境下常用数据挖掘算法的优化,大数据新常态下催生的数据分析方法(如推荐系统、链接分析与网页排序、互联网信息抽取、日志挖掘与查询分析)、工具与应用。本书适合作为相关专业本科和研究生教材。高职高专学校也可以选用部分内容开展教学。本书也很适合作为大数据分析研发人员的自学书籍。
本书全面介绍了数据库系统基本原理以及数据库管理系统应用技术。全书共8 章,主要内容包括数据库系统概述、关系数据库系统理论基础、关系代数和关系的规范化理论、SQL Server 2012 概述与安装、数据库的创建与管理、数据表的创建与管理、视图、索引以及备份与恢复等内容。本书主要是为了满足高等院校培养应用技术型人才的需要而编写的,具有较强的实用性。 本书内容循序渐进、深入浅出、概念清晰、结构合理,将数据库基本原理与应用实践相结合并配有适量的例题和习题,帮助读者从不同角度理解和掌握所学的知识,构建完整的知识体系。 本书可作为高等院校计算机专业或数学、通信、电子类等相关专业的本科生或高职高专院校专科生的教材,也可作为计算机爱好者的自学用书。
本书是在新工科背景下编写的一本综合大数据基本理论知识与应用技术的兼顾 通识教育 和大数据相关专业教育的教材。 本书从解析数据、大数据基础理论入手,描述大数据应用的多侧面场景,讲解大数据的存储于管理工具,大数据分析的基本方法,以及大数据可视化等相关知识。本书在内容安排上,力求体现 能进入、快适应、解需求、重实践 的宗旨,以 小 的数据应用实例讲解 大数据 的知识框架和相关技术,使应用实例贯穿全书。 本书的 通识教育 特色,使其可以作为所有专业的本科生学习大数据技术、培养 计算思维 能力的教材,也可作为大数据相关专业的入门教材,以及广大计算机学习者的培训用书和自学参考书。
魏华主编的《数据库原理及应用》共分为8章, 内容包括数据库系统概述、关系数据库、关系数据库 标准语言SQL、关系数据库理论、数据库安全管理、 数据库设计、数据库编程以及数据库系统应用开发等 。内容涵盖了关系数据库系统的原理、设计和应用, 而且将目前*典型代表性的SQL Server 2008数据 库管理系统的实践贯穿全书。 《数据库原理及应用》主要面向教学(应用)型大 学的计算机科学与技术、信息管理与信息系统、电子 商务、管理工程等相关专业,可作为“数据库原理与 应用”课程的教材,也可作为相关从业人员的培训教 材和参考资料。
大数据让我们以一种前所未有的方式,通过对海量数据进行分析,获得有巨大价值的产品和服务,*终形成变革之力。本书围绕Hadoop和Spark这两个主流技术进行讲解,主要内容包括Hadoop环境配置、分布式文件系统HDFS、分布式计算框架MapReduce、资源调度框架YARN与Hadoop新特性、大数据数据仓库Hive、离线处理辅助系统、Spark Core、 Spark SQL、Spark Streaming等知识。 为保证*学习效果,本书紧密结合实际应用,利用大量案例说明和实践,提炼含金量十足的开发经验。本书使用Hadoop和Spark进行大数据开发,并配以完善的学习资源和支持服务,包括视频教程、案例素材下载、学习交流社区、讨论组等终身学习内容,为开发者带来全方位的学习体验,更多技术支持请访问课工场官网:www.kgc.cn。
本书强化知识脉络,内容循序渐进,环环相扣; 从培养应用型人才的目标出发,以数据库设计过程和数据库操作为主线,将数据库的原理与实际应用开发有机结合,增强学生的实际动手能力,培养真正满足社会需求的数据库技术人才。本书共分为9章,第1章主要讲述数据库系统的基本概念以及数据库系统的组成和体系结构,第2章讲述数据库的设计过程; 第3章~第5章主要讲述数据库的定义与操作; 第6章讲述关系数据库的规范化; 第7章讲述数据库系统管理; 第8章和第9章讲述数据库的编程。本书既可作为大中专院校学生学习数据库系统的教材,也可供数据库爱好者参考。