本书是一本基于 Python 实现全部例题计算的统计学教材,书中例题解答均给出了详细的实现代码和结果。全书共 11 章,第1章和第2章介绍数据、Python 的下载与安装、Python的数据类型和基本操作、Python 绘图基础等。第3章和第4章介绍数据的描述性分析方法,包括数据可视化和描述统计量。第5~7章介绍数据的推断性分析方法,包括概率分布、参数估计和假设检验。第8~11章介绍实际中常用的一些统计方法,包括类别变量分析、方差分析、回归分析、时间序列分析等。 本书可作为高等院校各专业开设统计学课程的教材,也可作为数据分析工作者、Python 数据分析和可视化爱好者的参考书。
《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,更加适合作为国内高校计算机及相关专业本科生数据库课程教材。
本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以系统化的实操步骤和丰富的实际案例让读者快速入门Power BI数据分析,掌握Power BI在多个业务领域的实际应用。全书共8章:商业智能与数据分析概述;Power BI简介;数据分析与可视化制作全过程;Power BI数据预处理;Power BI数据建模;Power BI数据可视化;Power BI在线服务;Power BI数据分析实战案例。 本书通俗易懂、循序渐进、内容全面、讲解详细,配备全套数据集、教学课件和学习视频,既适合读者自学Power BI数据分析与可视化,也适合大专院校作为教材,更适合从事销售、产品、电商运营、仓储物流、财务管理、人力资源等岗位的职场人士提升技能。
本书与以往统计学中的概率论略有不同,添加了一些复杂数据类型的概率基础知识和模拟计算中的相关概率知识。具体安排如下所述。本书共分6章。第1章为概率与计数,基本内容是随机事件、概率空间、计数方法、概率的确定方法。第2章为条件概率,基本内容是条件概率与乘法公式、事件的独立性、全概率公式与贝叶斯公式。第3章为随机变量,基本内容是随机变量及其分布函数、随机变量的分类、二维随机向量、随机变量的独立性、随机变量函数的分布。第4章为常用的概率分布,基本内容是常用的离散型随机变量、常用的连续型随机变量、随机数的产生。第5章为随机变量的数字特征,基本内容是数学期望、方差和协方差、矩和矩母函数、条件期望。第6章为不等式和极限定理,基本内容是概率不等式、大数定律及其应用、中心极限定理。
本书是一本系统介绍Clickhouse的指导型工具书,全书总共分为11章: 第1章 介绍ClickHouse的由来、发展历程、核心特点与核心特点。第2~6章 介绍了ClickHouse基础使用部分,包括整体架构、如何安装、数据定义、数据引擎、数据查询和函数的特性和使用方法。第7~9章介绍了ClickHouse高级特性部分,包括数据库管理操作,数据分片、数据副本和高可用的特性和使用方法。第10~11章介绍了如果自己手动实现ClickHouse中间件的思路和示例,同时也介绍了几款可视化工具与ClickHouse集成的方法。
教材系统地介绍文本数据挖掘的相关概念,利用Python作为工具进行相关试验,其内容主要包括:文本挖掘产生的背景及发展;文本挖掘的概念、文本模型表示、文本内容的预处理,包括分词、去停用词以及特征抽取;文本相似度的概念等。介绍文本分类的概念及常用方法,如KNN算法、SVM算法等,并对分类结果进行评价;在介绍文本聚类聚类的概念时是,同样介绍聚类常用算法,如K均值算法、层次聚类法、密度聚类法等,作为有文本分类、文本聚类的应用,*后给出了信息抽取、社会网络中的实体关系抽取和事件抽取。
Power BI是微软推出的商业智能分析工具,它融合了数据准备、数据分析、数据可视化到报告协作分享的整个数据处理流程,帮助用户上手数据分析。 本书从实用的角度出发,结合作者本人的学习经验,从*基础的Power BI架构和操作界面开始,先通过一个小示例体验Power BI的强大和便捷,然后按照数据处理的流程和难易程度,分别介绍数据准备模块Power Query、数据建模以及Power BI数据分析语言DAX、可视化图表制作、丰富的交互方式和报表设计,*后用一个完整的分析示例带读者全面认识Power BI数据处理流程。 不论读者是学生、职场人士还是自由职业者,不论从事的领域是运营、财务、人力、管理还是电商,只要在平时的学习和工作中需要处理大量信息,分析各种数据,你就适合阅读本书学习Power BI,即使之前没有任何基础,它也可以帮你快速上手,提升自身竞争力。
数据库技术自从上世纪60年代诞生以来,经历了网状数据库、层次数据库等发展阶段,zui终在80年代确立了关系数据库技术的主导地位。关系数据库技术经过几十年的发展,在各行各业都取得了巨大的成功。但是,进入21世纪后,随着互联网、物联网、云计算等技术的快速发展,传统的关系数据库技术由于在可扩展性、灵活性等方面存在的不足,难以支持层出不穷的新型应用。在此背景下,键值数据库、文档数据库、列存储数据库、图数据库等新型数据库技术因运而生。本书与现有的介绍关系数据库技术为主的书籍不同,重点介绍当前数据库领域中出现的各类新型数据库系统的概念、基础理论、关键技术以及典型应用。在理论方面,本书除了介绍各类新型数据库系统中基本的理论和原理之外,还将侧重于对这些理论的研究背景和动机进行讨论,使读者能够了解新型数
随着物联网、云计算、大数据与人工智能等技术的蓬勃发展,计算服务逐渐从计算密集型向数据密集型(Data Intensive)转变。高性能、高通量的数据服务关键技术成为智慧城市、智能制造、智慧农业等国家重大需求解决方案的核心基础。并行与分布式数据处理的概念启发于上世纪80年代,源自讨论在内存及二级存储极为有限的条件下如何跨越 内存墙 ,完成计算任务的优化技术。而今,互联网与私有网络数据指数级增长、数据服务的事务性需求复杂多变、跨地域数据同步需求动态不统一、如何应对当前及未来大数据服务及其上的人工智能计算对并行与分布式数据服务提出了新的问题与挑战。本书从并行与分布式数据服务的基础理论、事务模型、数据处理语言等基础内容,并进一步讨论分布式数据一致性模型及全观性的数据处理架构方面的先进及实用的研究及系统软件
本书介绍了数据链的基本概念、发展历程和趋势,重点分析了Link-4、Link-11、Link-16和Link-22数据链的系统组成、工作模式、技术特点等内容,并以Link-16数据链为重点,全面阐述了该数据链的信道共享机制、时间同步技术、传输消息类型、封装结构、信号波形等内容,给出了多网、导航、中继、距离扩展等功能实现方法;以数据链关键技术为主线,详细论述了数据链的消息格式、信息传输、网络协议、通信安全等方面相关知识,剖析了数据链的本质。
在云计算和互联网快速发展的驱动下,分布式技术领域产生了很多新的热点,分布式数据库就是其中之一。但是,目前对分布式数据库的理解和研究多停留在理论层面,本书以Greenplum分布式数据库为例,深入剖析分布式技术在工业级产品里的实现细节,为读者呈现从理论到实践的 全景图 。 本书共3篇:第1篇主要介绍分布式数据库基础理论,包括经典的CAP理论、一致性算法相关的理论、并发控制相关的理论等;第2篇具体介绍Greenplum数据库,从分布式事务、分布式计算和分布式存储3个方面,深入代码层级,讲述分布式理论在工业上的实现;第3篇是总结和展望,介绍云原生数据库和新技术带给Greenplum和数据库管理系统的机遇和挑战。 本书打破以理论介绍和架构介绍为主的思路,深入分析工业化的实现,实践性强。本书主要面向数据库领域的科研工作者
Elasticsearch是一款高性能的文档数据库,广泛应用于分布式搜索和分析引擎等相关领域,本书首先介绍了数据建模的通用设计原理,然后针对Elasticsearch 介绍了文档数据库建模的特点和要求,例如和设计模式有关的实现、注意事项,以及实践过程中的注意点等。 本书的两位作者,一位是资深的Elasticsearch 专家,一位是建模领域的大师,联合为读者呈现了这本著作。如果你是一名希望扩展Elasticsearch 建模技能的读者,或者是一名了解Elasticsearch 但需要提高模式设计技能的从业人员,推荐阅读本书。
本书系统地介绍了大数据相关理论知识,重点阐述了大数据的基本原理、技术、平台和不同领域的应用案例。全书共分为8章:第1章为引论,介绍大数据背景、应用价值和基本概念;第2章到第7章为技术章节,分别介绍大数据获取、大数据管理、大数据处理、大数据分析与学习、大数据隐私保护和大数据治理等内容;第8章介绍大数据在行业中的典型应用案例,反映了大数据在社会经济生活中的重要价值。每个章节均设有习题。 本书既可作为高等学校大数据相关专业的教学用书,也可作为大数据领域相关技术人员的参考用书。
本书围绕数据中心业务如何经营这一主题展开论述,以数据中心产业演变为切入点,围绕“布局-建设-服务”三大核心环节,针对数据中心产业面临的集群化布局、低碳化建设、智能化服务的机遇与挑战,通过变革中的数据中心产业、数据中心产业面临的挑战、数据中心布局之道、数据中心低碳建设之道、数据中心智能服务之道、数据中心产业政策实施之道、新形态数据中心经营之道等内容剖析原因、洞察规律、研讨案例、搭建模型,为相关经营主体给出了专业务实的策略。 本书实用性强,内涵丰富,采用情景对话方式编写,可读性强,具备较高参考价值。 本书可供通信运营商、第三方专业服务商、跨界服务商等各类数据中心运营主体的从业人员阅读,也可供主管数据中心建设与运营的政府部门的工作人员阅读。
数据作为生产要素已经被提升至国家战略层面,如何激活数据要素、体现数据价值,如何有效利用数据赋能数字化转型,成为当前炙手可热的问题。本书厘清了数据治理、数据管理和数字化转型的关系,介绍了数据治理核心工作中经常出现的问题和优秀实践,明确了数字化转型的核心内容、方法路径和评估机制,通过大型企业数据治理或数字化转型案例为读者提供有价值的参考。本书适合首席执行官、首席信息官、首席数据官等从事企业管理和数据管理工作的人员阅读,有助于提升对数据治理和数字化转型的认识,为在组织中有效开展数据治理和数字化转型工作提供思路和借鉴。
本书系统讲述数据仓库的基本概念、基本原理以及建立数据仓库的方法和过程。主要内容包括:决策支持系统的发展、数据仓库环境结构、数据仓库设计、数据仓库粒度划分、数据仓库技术、分布式数据仓库、ElS系统和数据仓库的关系,外部和非结构化数据与数据仓库的关系、数据装载问题、数据仓库与Web、ERP与数据仓库以及数据仓库设计的复查要目。 本书是数据仓库之父撰写的关于数据仓库的 权威著作,既可作为相关专业的研究生教材,也是数据仓库的研究、开发和管理人员的指南。
算力、数据、AI已经成为驱动当今社会技术发展的三架马车,而算力也从传统的超级计算向云超算的方向发展。本书旨在探讨当前超级计算与云计算的融合而给算力带来的新的发展,介绍当前在算力领域的一些实践和探索,从理论到工程,帮助读者了解超级计算的关键技术与未来发展,从而更好地应用和发展高性能技术。
本书全面介绍了预测性分析相关方法,不仅直观地阐述了相关概念,还给出了现实的示例问题和真实的案例研究 包括从失败项目获得的经验教训。 本书理论和实践内容相对平衡,便于读者加深理解。 全书共9章,外加一个附录。 第1章为分析导论, 第2章为预测性分析和数据挖掘导论, 第3章介绍预测性分析的标准流程, 第4章介绍预测性分析的数据和方法, 第5章介绍预测性分析算法, 第6章探讨预测性建模中的高阶主题, 第7章介绍文本分析、主题建模和情感分析, 第8章介绍预测性分析使用的大数据, 第9章介绍深度学习和认知计算, 附录展望了商业分析和数据科学工具的前景。 本书适合计算机科学、数据科学和商业分析领域的相关从业人员阅读。