《Python语言程序设计与应用/普通高等教育大学计算机“十三五”精品立体化资源规划教材》的编写参考了全国计算机等级考试“Python语言程序设计”及广东省计算机水平考试“Python程序设计”考试大纲及样题。全书共12章,分为基础和提高两篇。基础篇包含-7章,包括Python语言概述、Python语法基础、Python高级数据类型、Python控制语句、Python函数与模块、面向对象程序设计、Python文件操作与数据格式化,主要讲述程序设计基础知识及在Python语言中的实现;提高篇包含第8-12章,包括多媒体数据处理、网络编程、Python网络爬虫、科学计算和可视化应用、Python机器学习等。内容涵盖Python的不同应用领域,展现了丰富的Python应用生态,既有Python标准库,也有大量流行的第三方库。 《Python语言程序设计与应用/普通高等教育大学计算机“十三五”精品立体化资源规划教材》
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度搜索、哈希函数、迪菲-赫尔曼密钥交换、k-means算法等。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,便于学习和记忆。将本书作为算法入门的步,是很好不错的选择。
《少博士趣学Python》是一本编程与科技结合的启蒙书籍,全书从简单的小示例入手,介绍核心编程概念,并通过多个简单、有趣的编程案例,启发初学者探索身边的科技。例如,编写聊天机器人、扫地机器人、数学试卷机器人、绘图软件、密码程序等。书中不仅讲解了Python语法,还通过编程示例,给青少年读者以信息世界的启蒙。
本书采用生动活泼的语言,从入门者的角度,讲解了Python 语言和sklearn 模块库内置的各种经典机器学习算法;介绍了股市外汇、比特币等实盘交易数据在金融量化方面的具体分析与应用,包括对未来股票价格的预测、大盘指数趋势分析等。简单风趣的实际案例让广大读者能够快速掌握机器学习在量化分析方面的编程,为进一步学习金融科技奠定扎实的基础。
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
《跟老齐学Python》系列后续。读者在本书中可以学习到Numpy、Pandas、matplotlib、SciPy、SymPy等与数据分析相关的库,掌握其所定义的数据对象以及常用的属性和方法等,并通过各种类型的应用举例将所学基本知识给予综合应用。
《Python统计分析基础及实践》以Pytho3为基础,详细介绍了Python在统计分析中的基础知识和实践应用,全书大致 由数据整理、概率和统计推断三部分组成。其中在章对统计分析对象——数据的基本用语和数据的分类进行了介绍。 第2~3章介绍了汇总平均值和数据方差的计算方法,进而介绍了数据可视化的方法。第4~9章介绍概率相关知识,概率是 统计分析中不可缺少的数学知识。0~12章介绍主要的统计分析方法,如参数估计、假设检验、回归分析等。其中每章 都用一个例子贯穿始终,提出问题并用Python编程实现,以点带面,可帮助读者快速理解知识点,并通过编程让读者对统 计分析建立直观的理解。 《Python统计分析基础及实践》知识点全面,内容安排由浅入深、循序渐进,特别适合大中专院校金融、财务、统计、 计算机、人工智能、机器学习相关专业学生学习,也适
本书首先对Arduino的用法进行了简单的介绍;然后详细解说了电子制作的基础知识、各种传感器的用法、电子电路的搭建方法和Sketch等;接着介绍了将Arduino连接网络的两种方法:一是难度稍高的使用Arduino M0 Pro和ESP-WROOM-02的方法,二是更为方便的使用Web服务BaaS的方法;最后介绍了4个电子制作的具体例子。
本书旨在介绍开源的Python算法库和数学工具包SciPy。近年来,基于NumPy和SciPy的完整生态系统迅速发展起来,并在天文学、生物学、气象学和气候科学,以及材料科学等多个学科得到了广泛应用。本书结合大量代码实例,详尽展示了SciPy的强大科学计算能力,包括用NumPy和SciPy进行分位数标准化,用ndimage实现图像区域网络,频率与快速傅里叶变换,用稀疏坐标矩阵实现列联表,SciPy中的线性代数,SciPy中的函数优化等。
本书旨在介绍开源的Python算法库和数学工具包SciPy。近年来,基于NumPy和SciPy的完整生态系统迅速发展起来,并在天文学、生物学、气象学和气候科学,以及材料科学等多个学科得到了广泛应用。本书结合大量代码实例,详尽展示了SciPy的强大科学计算能力,包括用NumPy和SciPy进行分位数标准化,用ndimage实现图像区域网络,频率与快速傅里叶变换,用稀疏坐标矩阵实现列联表,SciPy中的线性代数,SciPy中的函数优化等。
编程的核心是算法,学习算法不仅能教会你解决问题的方法,而且还能为你今后的发展提供一种可能。《你也能看得懂的Python算法书》面向算法初学者,首先介绍当下流程的编程语言Python,详细讲解Python语言中的变量和循序、分支、循环结构,以及列表和函数的使用,为之后学习算法打好基础。然后以通俗易懂的语言讲解双指针、哈希、深度、广度、回溯、贪心、动态规划和很短路径等经典算法。《你也能看得懂的Python算法书》适合有编程基础的算法爱好者阅读。
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
本书结合了机器学习、数据分析和Python语言,通过案例以通俗易懂的方式讲解了如何将算法应用到实际任务。 全书共20章,大致分为4个部分。部分介绍了Python的工具包,包括科学计算库Numpy、数据分析库Pandas、可视化库Matplotlib;第2部分讲解了机器学习中的经典算法,例如回归算法、决策树、集成算法、支持向量机、聚类算法等;第3部分介绍了深度学习中的常用算法,包括神经网络、卷积神经网络、递归神经网络;第4部分是项目实战,基于真实数据集,将算法模型应用到实际业务中。 本书适合对人工智能、机器学习、数据分析等方向感兴趣的初学者和爱好者。
低代码开发平台是企业实现数字化转型的有效手段。近几年,各大软件公司纷纷布局和推出低代码开发平台,而微软公司的Power Platform 已占据世界500 强97%企业的市场。 本书从Power Platform 基础理论出发,并着手实践,除了介绍大众熟知的数据可视化工具Power BI,还介绍Power Apps、Power Automate、Power Virtual Agents 及通用组件(AI Builder、Data Connector、Dataverse)等,帮助读者了解Power Platform 的工作原理和业务场景,掌握低代码应用开发、流程自动化、数据分析与可视化、智能聊天机器人等应用技能。 本书内容循序渐进,指导性强,尤其适合非IT 背景的业务人员,及对数字化转型,特别是对全民开发、低代码开发感兴趣的读者阅读、使用。
在本书中,作者聚焦于微软的Power BI,并通过精准的演示,向读者清楚地展示如何在各种数据库和CRM应用程序上产生数据视觉效果。另外的福利就是,读者还可以了解如何在Azure应用程序中嵌入视觉效果。Cortana套件的整合确实是一个倍增器。 你将学到:— 数据可视化解决方案的市场调查。 — 如何使用普通和 的Power BI功能。 — 如何将嵌入式Power BI仪表板部署为Azure应用程序。 — 如何使用Microsoft SQL Server构建现代Power BI解决方案,并应用包括Cortana在内的Microsoft Stack。 — 如何在开源数据存储上构建一个视觉上令人满意的Power BI解决方案,即PostgreSQL。 — 如何解锁企业机密,例如通过将Power BI与Dynamics CRM集成并使用自然语言查询来梳理趋势,进而突出 相关的业务趋势。