本书内容按照算法策略分为7章。第1章从算法之美、简单小问题、趣味故事引入算法概念、时间复杂度、空间复杂度的概念和计算方法,以及算法设计的爆炸性增量问题,使读者体验算法的奥妙。第2~7章介绍经典算法的设计策略、实战演练、算法分析及优化拓展,分别讲解贪心算法、分治算法、动态规划、回溯法、分支限界法、线性规划和网络流。每一种算法都有4~10个实例,共50个大型实例,包括经典的构造实例和实际应用实例,按照问题分析、算法设计、完美图解、伪代码详解、实战演练、算法解析及优化拓展的流程,讲解清楚且通俗易懂。录介绍常见的数据结构及算法改进用到的相关知识,包括sort函数、优先队列、邻接表、并查集、四边不等式、排列树、贝尔曼规则、增广路复杂性计算、zui大流zui小割定理等内容。本书可作为程序员的学习用书,也适合从未
集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。 《集成学习:基础与算法》分为三部分。部分主要介绍集成学习的背景知识;第二部分主要介绍集成学习方法的核心知识,包括Boosting、Bagging、Random Forests 等经典算法,平均、投票和Stacking 等模型和方法、相关理论分析工作,以及多样性度量和增强方面的进展;第三部分介绍集成学习方法的进阶议题,包括集成修剪、聚类集成和集成学习方法在半监督学习、主动学习、代价敏感学习、类别不平衡学习及提升可理解性方面的进展。此外,《集成学习:基础与算法》还在每章的“拓展阅读”部分提供了相关的进阶内容。
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了7个数据结构和26个基础算法的基本原理。第1章介绍了链表、数组、栈等7个数据结构;从第2章到第7章,分别介绍了和排序、查找、图论、安全、聚类等相关的26个基础算法,内容涉及冒泡排序、二分查找、广度优先搜索、哈希函数、迪菲-赫尔曼密钥交换、k-means算法等。本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,便于学习和记忆。将本书作为算法入门的步,是不错的选择。