《C Primer Plus(第6版)中文版》详细讲解了C语言的基本概念和编程技巧。 《C Primer Plus(第6版)中文版》共17章。第1章、第2章介绍了C语言编程的预备知识。第3章~第15章详细讲解了C语言的相关知识,包括数据类型、格式化输入/输出、运算符、表达式、语句、循环、字符输入和输出、函数、数组和指针、字符和字符串函数、内存管理、文件输入和输出、结构、位操作等。第16章、第17章介绍C预处理器、C库和高级数据表示。本书以丰富多样的程序为例,讲解C语言的知识要点和注意事项。每章末尾设计了大量复习题和编程练习,帮助读者巩固所学知识和提高实际编程能力。附录给出了各章复习题的参考答案和丰富的参考资料。 《C Primer Plus(第6版)中文版》可作为C语言的教材,适用于需要系统学习C语言的初学者,也适用于想要巩固C语言知识或希望进一步提高编程技
《算法竞赛入门经典(2版)》是一本算法竞赛的入门与提高教材,把C/C 语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧。全书内容分为12章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、C 与STL入门、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法、高级专题等内容,覆盖了算法竞赛入门和提高所需的主要知识点,并含有大量例题和习题。书中的代码规范、简洁、易懂,不仅能帮助读者理解算法原理,还能教会读者很多实用的编程技巧;书中包含的各种开发、测试和调试技巧也是传统的语言、算法类书籍中难以见到的。 《算法竞赛入门经典(2版)》可作为全国青少年信息学奥林匹克联赛(NOIP)复赛教材、全国青少年信息学奥林匹克竞赛(NOI)和ACM国际大学生程序
本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用算法为软件开发助力。前三章介绍算法基础,包括二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如何时采用分而治之、贪婪算法或动态规划,哈希表的应用,图和树算法,K最近邻算法等。这一版将示例代码更新到了Python 3,并新增了两章专门讨论树,加之诸多修订,使得内容更加完善。
本书是算法竞赛的入门和进阶教材,包括算法思路、模板代码、知识体系、赛事相关等内容。本书把竞赛常用的知识点和竞赛题结合起来,讲解清晰、透彻,帮助初学者建立自信心,快速从实际问题入手,模仿经典代码解决问题,进入中级学习阶段。 全书分为12章,覆盖了目前算法竞赛中的主要内容,包括算法竞赛概述、算法复杂度、STL和基本数据结构、搜索技术、高级数据结构、基础算法思想、动态规划、数学、字符串、图论、计算几何。 本书适合用于高等院校开展的ICPC、CCPC等算法竞赛培训,中学NOI信息学竞赛培训,以及需要学习算法、提高计算思维的计算机工作者。
随着机器视觉技术的飞速发展,大量需要使用机器视觉代替人工检测的需求应运而生。Halcon在开发机器视觉项目中表现出的高效性和稳定性,使其应用范围非常广泛。本书将针对机器视觉的原理和算法,以及如何应用算法解决问题进行探讨和说明,并利用Halcon对各种机器视觉算法进行举例,让读者全面、深入、透彻地理解Halcon机器视觉开发过程中的各种常用算法的原理及其应用方法,提高实际开发水平和项目实战能力。同时,也为机器视觉项目的管理者提供项目管理和技术参考。 《Halcon机器视觉算法原理与编程实战》适合需要全面学习机器视觉算法的初学者,希望掌握Halcon进行机器视觉项目开发的程序员,需要了解机器视觉项目开发方法的工业客户、机器视觉软件开发项目经理、专业培训机构的学员,以及对机器视觉算法兴趣浓厚的人员阅读。
本书是备受广大读者推崇的数据结构与算法入门教程,已在GitHub获得超60k的 Star,并多次登顶GitHub Trending。书中系统介绍了数据结构与算法基础、复杂度分析、数组与链表、栈与队列、哈希表、树、堆、图、搜索、排序、分治、回溯、动态规划和贪心算法等核心知识,通过清晰易懂的解释和丰富的代码示例,以及生动形象的全彩插图和在线动画图解,揭示算法工作原理和数据结构底层实现,教授读者如何选择和设计算法来解决不同类型的问题,切实提升编程技能,构建完整的数据结构与算法知识体系。
本书是蓝桥杯大赛软件类入门教程,详细讲解了蓝桥杯大赛软件类入门阶段的核心知识点,也是大赛必考和常考的知识点,包括数据结构、基本算法、搜索、数学、动态规划、图论等。 本书用大量的大赛真题作为例题,帮助读者巩固知识点的应用; 代码简洁精要,可作为比赛模板; 文字简洁明快,实现了较好的易读性。 本书适合正在学编程语言或刚学过编程语言,算法和数据结构零基础的算法竞赛初学者,帮助读者学习的知识点、建立计算思维、提高建模能力和编码能力; 本书也可用于其他算法竞赛(全国青少年信息学奥林匹克竞赛(NOI)、国际大学生程序设计竞赛(ICPC)、中国大学生程序设计竞赛(CCPC)、中国高校计算机大赛 团体程序设计天梯赛等)的入门学习。
"《算法不难 》结合300多幅示意图与70个算法示例(Python实现)直观地讲述36种常用经典算法的相关知识和9种经典算法思想,帮助读者深入理解相关算法的原理与设计思想,为后续学习高级算法夯实基础。 《算法不难 》分为5章。第1章介绍算法的基本概念以及如何正确使用和设计算法等相关知识;第2章介绍排序算法的基本思想以及冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、桶排序和基数排序十大排序算法;第3章首先介绍图算法的基础知识,然后介绍路径搜索、广度优先搜索、深度优先搜索、最小生成树、单源最短路径、最大流等常用图算法。第4章介绍字符串处理算法的相关知识,涵盖字符串基础知识以及字符串判断、字符串匹配、字符串排序和字符串压缩等。第5章介绍枚举、递推、递归、分治、贪心、动态规划、迭代
本书共13章,第1章引入了微服务架构模式语言的概述;第2章解释了为什么软件架构很重要,并描述了可用于将应用程序分解为服务的模式;第3章介绍了微服务架构中强大的进程间通信的几种模式;第4章介绍Saga模式;第5章介绍领域驱动设计(DDD)的聚合和领域事件等模式的使用;第6章介绍如何使用事件溯源模式;第7章介绍如何使用 API 组合模式或命令查询责任隔离(CQRS)模式;第8章介绍外部 API 模式;第9章和第10章介绍微服务自动化测试技术;第11章介绍开发生产就绪服务的各个方面;第12章介绍部署模式;第13章介绍绞杀者模式。
本书定位于夯实数学建模基础,采用主流编程方法和简洁代码实现常用的数学建模算法,以案例为导向,围绕数学建模知识体系展开。全书分5篇,共11章。前两章是数学建模基础篇,包括数学建模介绍、数学建模的一般流程(初等模型)、如何从算法到编程实现(层次分析法与自定义函数);接着按算法板块组织内容,包括微分方程模型篇(人口模型、传染病模型)、优化模型篇(规划模型、投资优化策略、优化模型进阶)、评价模型篇(经典评价模型、模糊理论)、预测模型篇(常规预测模型、时间序列分析)。本书有配套源码资源和电子课件。 本书可作为高等院校数学建模的入门教材,也可作为数学建模指导教师的参考资料,还可作为其他相关行业人员、科研人员使用数学模型解决实际问题的参考用书。
《算法竞赛入门笔记》从参赛者的视角出发,结合编者丰富的亲身竞赛经验,系统地介绍算法竞赛的关键知识点和核心技能。《算法竞赛入门笔记》共13章,内容涵盖赛前准备、基础算法、STL容器、搜索技巧、动态规划、图论、数论、博弈论以及真题解析等重要主题。 《算法竞赛入门笔记》的独特之处在于将算法竞赛中的实用知识点与竞赛题目紧密结合,并对高频考点和重要内容进行归纳总结。书中不仅详细讲解理论知识,还结合大量实战例题,使读者能够在实际问题中灵活运用所学算法。此外,书中提供的C 代码模板简洁高效,易于阅读和理解,便于快速上手练习。对于复杂的概念与核心算法,还配以直观的手绘图示说明,大大降低了学习难度,提高了学习效率。 《算法竞赛入门笔记》讲解深入浅出,代码注释详尽,内容丰富实用,特别适合参加各类算法竞赛(
《智能优化算法与MATLAB编程实践》介绍了国内外新研发的10种智能优化算法,对每种算法的灵感来源、实现过程、函数编程、案例应用都进行了细致描述并给出详细的MATLAB代码,使读者快速掌握智能优化算法的学习和应用方法。 全书共分为12章,前10章分别介绍10种智能优化算法的原理、MATLAB实现、具体函数寻优求解过程和应用案例;第11章列举了23种衡量智能优化算法性能的常见测试函数,并给出MATLAB代码;第12章重点介绍智能优化算法的评价指标体系,选取部分测试函数和文中算法进行测试与分析,并给出完整MATLAB代码,供读者参考。 本书的主要特点为算法新颖,要素齐全,案例丰富,可移植性和实战性强。理论研究和工程技术人员可通过本书快速理解、掌握书中算法,节省大量时间,感兴趣的读者可以在此基础上进行深入研究。 本书可作为本科生、研究生和教
《因果推理:基础与学习算法》从概率统计的角度入手,分析了因果推理的假设,揭示这些假设所暗示的因果推理和学习的目的。本书分别论述了两个变量和多变量情况下的因果模型、学习因果模型及其与机器学习的关系,讨论了因果推理隐藏变量有关的问题、时间系列的因果分析。 《因果推理:基础与学习算法》可作为高等院校人工智能和计算机科学等相关专业高年级本科生和硕士研究生的教材,也可供研究机器学习、因果推理的技术人员参考。
本书围绕黎曼流形优化发展过程中的理论前沿与热点问题,比较全面和系统地介绍了黎曼流形优化的基本原理和应用实践的最新成果。全书共7章,分为理论与应用两个部分。理论部分包括黎曼流形内涵、常用黎曼流形及其几何结构、收缩、低秩流形收缩、黎曼最速下降法、黎曼牛顿法、黎曼共轭梯度法、黎曼信赖域法和黎曼拟牛顿法等内容。应用部分包括鉴别性结构化字典学习、多源多波段图像融合、特征值问题求解(单位球面约束的Rayleigh商最小化、Stiefel流形上的Brockett函数最小化)等。本书内容新颖、体系完整,具有系统性、实用性、先进性和前瞻性。
本书是NOIP算法竞赛的入门教材,重点介绍算法设计竞赛的相关知识体系,将C/C 语言、算法和解题有机地结合在一起,注重理论与实践相结合,着重培养学生的计算思维能力。 本书内容涵盖了NOIP竞赛普及组和提高组所需掌握的绝大部分知识点、常见的算法分析设计及实现技巧和方法,主要内容包括计算机的基础知识,算法描述、设计工具,C/C 程序设计语言,数据结构及其相关基础算法,算法设计技术基础,数论、概率论及组合数学基础等。本书以历年相关竞赛常见考试题型及题例作为例题解析和习题。书中的绝大部分代码规范、简洁、易懂,不仅能帮助读者理解信息技术中的算法原理,在掌握各类经典算法的同时还能学会很多实用的编程技巧,提高分析解决实际问题的能力。 本书可作为全国青少年信息学奥林匹克联赛(NOIP)初/复赛、全国青少年信息学奥林匹克
作者莱维汀基于丰富的教学经验,开发了一套全 新的算法分类方法。该分类法站在通用问题求解策略 的高度,对现有大多数算法准确分类,从而引领读者 沿着一条清晰、一致、连贯的思路来探索算法设计与 分析这一迷人领域。本书作为第3版,相对前版调整 了多个章节的内容和顺序,同时增加了一些算法,并 扩展了算法的应用,使得具体算法和通用算法设计技 术的对应更加清晰有序;各章累计增加了70道习题, 其中包括一些有趣的谜题和面试问题。 《算法设计与分析基础(第3版)》十分适合用作 算法设计和分析的基础教材,也适合任何有兴趣探究 算法奥秘的读者使用,只要读者具备数据结构和离散 数学的知识即可。
本书介绍在嵌入式系统中的机器学习算法优化原理、设计方法及其实现技术。内容涵盖通用嵌入式优化技术,包括基于SIMD指令集的优化、内存访问模式优化、参数量化等。并在此基础上介绍了信号处理层面的优化,包括AI推理算法及基于神经网络的AI算法训练-推理联合的优化理论与方法。其中信号处理层面优化包括了基于线性代数的快速近似算法、基于多项式的快速卷积构造技术、基于数据二进制结构的快速乘法算法等;在AI推理层面,介绍了机器学习推理模型共性结构、运算图中各个算子的计算优化途径;另外对基于神经网络AI算法,阐述了如何将推理阶段的运算量约束以及底层数据量化约束加入训练代价函数,从算法训练端减少运算量以提升AI嵌入式系统的运行效率;此外本书还通过多个自动搜索优化参数并生成C代码的例子介绍了通用的嵌入式环境下机器学习
《算法零基础一本通(Python版)》使用 Python 指导读者从零开始学习算法 :由基础数据结构开始,逐步解说信息安全算法,*后也讲解了人工智能入门领域的 KNN 和 K-means 算法。《算法零基础一本通(Python版)》包含约 120 个程序实例,使用约 600 张完整图例,深入讲解了 7 种数据结构和数十种算法,此外也针对国内外著名公司招聘程序员的算法考题做了讲解。《算法零基础一本通(Python版)》实用性强、案例丰富,适合有一定 Python 基础的读者使用,也可作为大中专院校及培训机构的参考教材。
本书以MATLABR2020a软件为基础,详细介绍各种智能算法的原理及MATLAB在智能算法中的应用,是一本MATLAB智能算法设计的综合性参考书。全书以智能算法原理及MATLAB应用为主线,结合各种应用案例,详细讲解智能算法在MATLAB中的实现方法。 全书共分为3部分:第一部分为基础知识;第二部分介绍经典的智能算法及其在MATLAB中的实现方法,包括遗传算法、免疫算法、蚁群算法、粒子群算法、小波分析、神经网络算法和模糊逻辑控制等内容;第三部分详细介绍智能算法在工程中的应用,包括模糊神经网络在工程中的应用、遗传算法在图像处理中的应用、神经网络在参数估计中的应用、基于智能算法的PID控制器设计等内容。 本书以工程应用为目标,内容讲解深入浅出、循序渐进,既可作为高等院校理工科相关专业研究生、本科生的教材,也可作为广大科研工程技术人员的参
本书系统地介绍了X86、龙芯、飞腾架构下的UEFI应用和驱动开发,系统调试专家、《软件调试》作者张银奎,以及UEFI专家、《UEFI原理与编程》作者戴正华联袂推荐。 本书以项目开发为导向,采取 近实战,多实例 的方式,细致深入地介绍了UEFI应用和驱动开发相关的知识。 第1~3章,介绍了UEFI系统的组成、启动过程,在各种操作系统中搭建和调试开发环境的方法,以及UEFI应用和驱动开发的基本方法。 第4~10章以实际的开发实践为索引,介绍了图形图像开发、汉字显示、GUI构建、访问PCI/PCIE设备、访问SMBus设备、访问串口设备、实现USB通信和网络通信等内容。这部分以贴近实际开发的方式来构建实例,并深入剖析相关硬件协议及其在UEFI上的实现。 第11章和第12章,讲解了龙芯和飞腾架构,以及如何在这两类国产处理器上进行UEFI软件开发。