《数值分析》介绍现代科学与工程计算中常见的数值计算方法及理论.《数值分析》内容包括:数值计算的误差和基本原则、线性方程组的直接解法和迭代解法、非线性方程(组)的数值解法、矩阵特征值问题的数值解法、插值法、函数逼近与*线拟合、数值积分与数值微分和常微分方程初值问题的数值解法.《数值分析》既注重数值计算方法及理论,又注重数值计算方法的实用性,主要算法都给出了数值实例和Python程序实现,在书末以二维码的形式呈现,感兴趣的读者可以下载源代码进行学习.每章章末配备了适量的练习题和上机实验题,书末附有部分习题的参考答案.
本书全面、系统地总结了在准备程序员面试过程中的数据结构与算法。本书首先详细讨论整数、数组、链表、字符串、哈希表、栈、队列、二叉树、堆和前缀树等常用的数据结构,然后深入讨论二分查找、排序、回溯法、动态规划和图搜索等算法。除了介绍相应的基础知识,每章还通过大量的高频面试题系统地总结了各种数据结构与算法的应用场景及解题技巧。本书适合所有正在准备面试的程序员阅读。无论是计算机相关专业的应届毕业生还是初入职场的程序员,本书总结的数据结构和算法的基础知识及解题经验都不仅可以帮助他们提高准备面试的效率,还可以增加他们通过面试的成功率。
本书是用轻松有趣的方法学习算法的入门指南。按照算法策略分为8章。第1章以算法之美、趣味故事引入算法,讲解算法复杂度的计算方法,以及爆炸性增量问题。2~7章讲解经典算法,包括贪心算法、分治算法、动态规划算法、回溯法、分支限界法、网络流算法。第8章讲解实际应用中的算法和高频面试算法,包括启发式搜索、敏感词过滤、LRU算法、快慢指针、单调栈、单调队列、零钱兑换、股票交易等。每一种经典算法都有4~8个实例,多数按照问题分析、算法设计、完美图解、算法详解、算法分析及优化拓展的流程进行讲解。全书讲解清晰,通俗易懂,紧扣工程教育认证的要求和实用性,力求满足新工科人才培养的需要。 本书为河南省 十四五 普通高等教育规划教材,提供了丰富的教学资源与答疑服务,包括源代码、课件、教案、习题、在线答疑和在线测试系
本书以海量图解的形式,详细讲解常用的数据结构与算法,又融入大量的竞赛实例和解题技巧。通过对本书的学习,读者可掌握12种初级数据结构、15种常用STL函数、10种二叉树和图的应用,以及8种搜索技术,并领悟不同的数据结构和算法的精髓,熟练应用各种算法解决实际问题。 本书总计9章。第1章讲解C 语言基础,包括语法、函数、递归和数组;第2章讲解算法入门知识,包括算法复杂度计算、贪心算法、分治算法和STL应用;第3章讲解线性表的应用,包括顺序表、单链表、双向链表、循环链表和静态链表;第4章讲解栈和队列的应用,包括顺序栈、链栈、顺序队列和链队列;第5章讲解树的应用,包括树的存储、二叉树遍历与还原、哈夫曼编码;第6章讲解图论基础,包括图的存储、图的遍历和图的连通性;第7章讲解图的应用,包括短路径、小生成树、拓扑排序
本书收集了历年来国家统考和985、211等重点高校和研究院、所的350多套硕士研究生入学“(算法与)数据结构”考试试卷的2100多道试题。作者按照数据结构课程的知识点对这些题目进行分类。在回顾知识点的基础上,对每一类题目进行分析、归纳答题思路,并给出了参考答案。本书收录的题目具有典型性,充分理解这些题目有助于学生更好地掌握数据结构课程的核心内容,以及应用知识解决实际问题的方法。 本书可以作为高等院校计算机及相关专业学习数据结构课程的参考书,对于报考相关专业硕士研究生的考生也极具价值,同时也适用于讲授该课程的教师以及自修该课程的其他人员。
集成学习方法是一类先进的机器学习方法,这类方法训练多个学习器并将它们结合起来解决一个问题,在实践中获得了巨大成功。全书分为三部分。*部分主要介绍集成学习的背景知识;第二部分主要介绍集成学习方法的核心知识,包括Boosting、Bagging、Random Forests等经典算法,平均、投票和Stacking等模型和方法、相关理论分析工作,以及多样性度量和增强方面的进展。第三部分介绍集成学习方法的进阶议题,包括集成修剪、聚类集成和集成学习方法在半监督学习、主动学习、代价敏感学习、类别不平衡学习,以及提升可理解性方面的进展。此外,本书还在每章中的 拓展阅读 部分提供了相关的进阶内容。本书适合对集成学习方法感兴趣的研究人员、学生和实践者阅读。
大模型技术掀起了新一轮人工智能浪潮,以ChatGPT 为核心的大模型相关技术可以应用于搜索、对话、内容创作等众多领域,在推荐系统领域的应用也不例外。 本书主要分为3部分。 第1部分简单介绍大模型相关技术,包括大模型的预训练、微调、在线学习、推理、部署等。 第2部分将大模型在传统推荐系统中的应用抽象为4种范式 生成范式、预训练范式、微调范式、直接推荐范式,并对每种范式给出算法原理说明、案例讲解和代码实现。 第3部分以电商场景为例,讲解大模型在电商中的7种应用,包括生成用户兴趣画像、生成个性化商品描述信息、猜你喜欢推荐、关联推荐、冷启动问题、推荐解释和对话式推荐,每种应用场景都包含完整的步骤说明和详细的代码实现,手把手教你构建大模型推荐系统。 本书适合有一定推荐系统基础,期望深入了解和学习大模型技术
本书通过主人公小灰的心路历程,用漫画的形式讲述了算法和数据结构的基础知识,复杂多变的算法面试题目及算法的实际应用场景。首先介绍了算法和数据结构的总体概念,告诉大家算法是什么,数据结构又是什么,都有哪些用途,如何分析时间复杂度,如何分析空间复杂度。第二章 介绍了*基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。第三章 介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉树的特殊形式二叉堆和优先队列的应用。第四章 介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。第五章 介绍了十余种职场上流行的算法面试题目及详细的解题思路。例如怎样判断链表有环、怎样计算大整数加法等。第六章 介绍了算法在职场上的一些应用,例如使用LRU算法来淘汰冷数据,使用Bitmap算法
大多数软件开发人员在复杂的代码上浪费了大量的时间。《整洁代码的艺术》提出的九大原则将教会您如何编写清晰、可维护且功能完备的代码。本书的指导原则很简单:缩减和简化,将精力投入到重要的工作上,省下大量的时间,卸下代码维护的重担。 热销书作者克里斯蒂安 迈尔在本书中利用他的经验帮助许多程序员完善他们的编码技能。他给出专业建议和真实例子,展示如何:利用80/20原则,专注于重要任务 要紧的那20%代码;避免孤立编码,创建小可行产品,获得早期反馈;编写整洁、简单的代码,排除混乱;避免导致代码过度复杂的过早优化;平衡您的目标、能力与反馈,达到高产出的心流状态;应用 做好一件事 哲学,极大地提升代码功能;利用 少即是多 哲学,设计有效用户界面;用 专注 原则贯穿所学的这些新技能。 本书采用Python作为示例语言,但
哇,编程!跟小明一起学算法这本书融入了游戏设计思想,通过游戏攻关的方式,介绍各种算法的原理和应用。全书共分8章,具体包括排序算法、穷举算法、递归算法、回溯算法、贪心算法、分治算法,栈、队列、树三种数据结构,动态规划算法,图论相关算法等内容。
本书由具有丰富编程竞赛经验的作者执笔撰写,荣获日本 2021年IT工程师图书特别大奖 。作为一本算法和数据结构的入门书,本书内容充实、深入浅出,包含了来自知名编程竞赛平台AtCoder的丰富例题和大量配以详细注释的C 代码片段,不仅系统讲解了常见的各类算法,而且还通过图解、代码和思考题的方式,致力提高读者的算法实践能力和问题解决能力。因此这既是一本入门书,能够激发初学者对算法的兴趣,又是一本注重实践的书,让想成为算法高手的读者可以在深入理解算法和数据结构的基础上,快速掌握编程思维,终身受用。 本书既适合初学算法的读者,也适合希望深入掌握各类实用算法设计技术的读者阅读和参考。
演化学习利用演化算法求解机器学习中的复杂优化问题, 在实践中取得了许多成功, 但因其缺少坚实的理论基础, 在很长时期内未获得机器学习社区的广泛接受. 本书主要内容为三位作者在这个方向上过去二十年中主要工作的总结. 全书共18 章, 分为四个部分: 部分(第1~2 章) 简要介绍演化学习和一些关于理论研究的预备知识; 第二部分(第3~6章) 介绍用于分析运行时间复杂度和逼近能力这两个演化学习的基本理论性质的通用工具; 第三部分(第7~12 章) 介绍演化学习关键因素对算法性能影响的一系列理论结果, 包括交叉算子、解的表示、非精确适应度评估、种群的影响等; 第四部分(第13~18 章) 介绍一系列基于理论结果启发的具有一定理论保障的演化学习算法. 本书适合对演化学习感兴趣的研究人员、学生和实践者阅读. 书中第二部分内容或可为有兴趣进一步探索演化学习理
区块链技术是一种全新的分布式基础架构和计算方式,本书着重阐述区块链系统中的共识算法理论及其场景应用。全书共分7章。第1章介绍区块链的发展过程和基本知识。第2~5章介绍传统分布式系统的一致性算法和典型区块链系统的共识机制,并详细介绍基于投票和信任的两种共识算法。第6章介绍融合区块链的拟态分布式安全存储系统。第7章介绍基于联盟链共识的共管共治多标识网络体系管理系统。
本书以海量图解的形式,详细讲解常用的数据结构与算法,并结合竞赛实例引导读者进行刷题实战。通过对本书的学习,读者可掌握22种高级数据结构、7种动态规划算法、5种动态规划优化技巧,以及5种网络流算法,并熟练应用各种算法解决实际问题。 本书总计8章。第1章讲解实用数据结构,包括并查集、优先队列;第2章讲解区间信息维护与查询,包括倍增、ST、RMQ、LCA、树状数组、线段树和分块;第3章讲解字符串处理,包括字典树、AC自动机和后缀数组;第4章讲解树上操作问题,包括点分治、边分治、树链剖分和动态树;第5章讲解各种平衡二叉树,包括Treap、伸展树和SBT;第6章讲解数据结构进阶,包括KD树、左偏树、跳跃表、树套树和可持久化数据结构;第7章讲解动态规划及其优化,包括背包问题、线性DP、区间DP、树形DP、数位DP、状态压缩DP、插头DP和动态规
深度学习是目前学术界和工业界都非常火热的话题,在许多行业有着成功应用。本书由Hulu的近30位算法研究员和算法工程师共同编写完成,专门针对深度学习领域,是《百面机器学习:算法工程师带你去面试》的延伸。全书内容大致分为两个部分,*部分介绍经典的深度学习算法和模型,包括卷积神经网络、循环神经网络、图神经网络、生成模型、生成式对抗网络、强化学习、元学习、自动化机器学习等;第二部分介绍深度学习在一些领域的应用,包括计算机视觉、自然语言处理、推荐系统、计算广告、视频处理、计算机听觉、自动驾驶等。本书仍然采用知识点问答的形式来组织内容,每个问题都给出了难度级和相关知识点,以督促读者进行自我检查和主动思考。书中每个章节精心筛选了对应领域的不同方面、不同层次上的问题,相互搭配,展示深度学习的 百面 精
本书是简单易懂的数据结构与算法入门书。作者略过复杂的数学公式,用 通俗讲解 逐步图示 代码实现 的方式介绍了数据结构与算法的基本概念,培养读者的算法思维。全书共有20章。读者将了解数据结构与算法为何如此重要,如何快速使用大O记法判断代码的运行效率,以及如何用动态规划优化算法。本书的重点内容包括冒泡排序、选择排序、插入排序等排序算法,以及深度优先搜索、广度优先搜索、迪杰斯特拉算法等图算法。在学习算法的过程中,读者也将通晓数组、哈希表、栈、队列、链表、图等常用数据结构的适用场景。
在编写代码时,每位软件专业人士都需要对算法有充分的理解。在这本实用性极强的著作中,作者对一些关键的算法进行了详实的描述,可以有效地提高用各种语言编写代码的质量。软件开发人员、测试人员和维护人员可以在本书中学会如何使用算法,以创造性的方式解决计算性问题。 本书各章内容前后衔接紧密,环环相扣,用醒目的图表有条不紊地展示了一些核心概念,并对书中介绍的每种算法的性能进行了分析。在每一章的后,读者需要应用在该章所学习的知识,解决一个新颖的具有挑战性的问题,就像在参加技术面试。 在本书中,读者将会: 学习计算机科学和软件工程中非常重要且基本的算法; 学习高效解决问题的常用策略,包括分治法、动态规划等; 使用大O表示法对代码进行分析,评估它的时间复杂度; 在算法中使用现有的Python程序库和数据
本书针对推荐系统中的二部图、社交网络和知识图谱的图结构模式,研究基于图表示学习的深度推荐系统。通过挖掘图信息中的隐性关系和高阶关系,使用图学习的方式探索用户和产品的潜在关联,弥补相关推荐系统研究在挖掘用户之间或者产品之间隐性关系方面的不足,形成一系列合理而且有效的推荐技术。增加推荐系统输入的多样性,运用社交网络和知识图谱等辅助信息,缓解推荐系统目前面临的 数据稀疏 、 冷启动 等问题,提高推荐系统的准确性和多样性,为推荐系统技术的发展提供可参考的方向。
本书是作者对柔性作业车间调度研究成果的系统总结。在车间实际生产过程中,工件在设备上的装卸调整及其在不同设备间的运输等辅助作业会对生产调度产生较大影响,因此,本书通过对考虑调整时间、运输时间等辅助时间约束的柔性作业车间调度问题进行研究,并设计改进遗传算法、改进模因算法以及混合优化算法对不同问题进行求解,最后结合车间的实际生产数据进行实例验证与分析,为制造企业提供参考。本书可作为高等院校智能制造工程、工业工程、机械设计制造及其自动化等专业学生的教学用书,也可作为研究车间调度、群体智能、优化算法等相关领域与专业的研究生及研究人员的参考用书。
个性化推荐能够根据用户的历史行为显式或者隐式地挖掘用户潜在的兴趣和需求,并为其推送个性化信息,因此受到研究者的追捧及工业界的青睐,其研究具有重大的学术价值及商业应用价值,已广泛应用于大型电子商务平台、社交平台、新闻客户端以及其他各类旅游和娱乐类网站中。本书内容丰富,较全面地介绍了基于协同过滤的推荐系统存在的问题、解决方法和评估策略,主要内容涉及协同过滤推荐算法中的时序技术、矩阵分解技术和社交网络信任技术等知识。本书可供从事推荐系统、人工智能、机器学习、模式识别和信息检索等领域的科研人员及研究生阅读、参考。