《算法竞赛入门经典(2版)》是一本算法竞赛的入门与提高教材,把C/C 语言、算法和解题有机地结合在一起,淡化理论,注重学习方法和实践技巧。全书内容分为12章,包括程序设计入门、循环结构程序设计、数组和字符串、函数和递归、C 与STL入门、数据结构基础、暴力求解法、高效算法设计、动态规划初步、数学概念与方法、图论模型与算法、高级专题等内容,覆盖了算法竞赛入门和提高所需的主要知识点,并含有大量例题和习题。书中的代码规范、简洁、易懂,不仅能帮助读者理解算法原理,还能教会读者很多实用的编程技巧;书中包含的各种开发、测试和调试技巧也是传统的语言、算法类书籍中难以见到的。 《算法竞赛入门经典(2版)》可作为全国青少年信息学奥林匹克联赛(NOIP)复赛教材、全国青少年信息学奥林匹克竞赛(NOI)和ACM国际大学生程序
本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了各种数据结构和算法的基本原理。第1章介绍了链表、数组、栈等数据结构;从第2章到第8章,分别介绍了和排序、查找、图、安全、聚类、数据压缩等相关算法,较为全面地介绍常见算法与数据结构知识。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,易于理解,便于学习和记忆。将本书作为算法入门的第一步,是非常不错的选择。
软件质量,不但依赖架构及项目管理,而且与代码质量紧密相关。这一点,无论是敏捷开发流派还是传统开发流派,都不得不承认。 本书提出一种观点:代码质量与其整洁度成正比。干净的代码,既在质量上较为可靠,也为后期维护、升级奠定了良好基础。作为编程领域的佼佼者,本书作者给出了一系列行之有效的整洁代码操作实践。这些实践在本书中体现为一条条规则(或称 启示 ),并辅以来自实际项目的正、反两面的范例。只要遵循这些规则,就能编写出干净的代码,从而有效提升代码质量。 本书阅读对象为一切有志于改善代码质量的程序员及技术经理。书中介绍的规则均来自作者多年的实践经验,涵盖从命名到重构的多个编程方面,虽为一 家 之言,然诚有可资借鉴的价值。
《深入浅出算法竞赛(图解版)》是为帮助读者理解基本的算法思想和编写高效的解决问题的程序而编写的。全书共6章,第1章概述了算法与算法竞赛的知识;第2章介绍了计算机程序解决问题的基本方法 穷举算法与贪心算法;第3章讲解了随机算法,如何利用概率与期望优化算法的效率;第4章讲解了AI的思维模式 搜索算法,如何用更灵活的方式遍历每一种可行解;第5章讲解了动态规划,如何通过状态间的转移,巧妙地规划解;第6章讲解了将大事化小、小事化了的分治算法,如何将问题拆分为易于解决的小问题。 本书配备了大量的算法竞赛试题,使用算法竞赛常用的C 语言编写。同时,本书不拘泥于算法竞赛,在第2 ~ 6章的后每一节给出一段阅读材料,介绍算法有趣的应用,帮助读者拓宽思维。 本书的讲解避开了繁琐枯燥的理论,采用浅显易懂的语言和大量生动
本书是算法竞赛的入门和进阶教材,包括算法思路、模板代码、知识体系、赛事相关等内容。本书把竞赛常用的知识点和竞赛题结合起来,讲解清晰、透彻,帮助初学者建立自信心,快速从实际问题入手,模仿经典代码解决问题,进入中级学习阶段。 全书分为12章,覆盖了目前算法竞赛中的主要内容,包括算法竞赛概述、算法复杂度、STL和基本数据结构、搜索技术、高级数据结构、基础算法思想、动态规划、数学、字符串、图论、计算几何。 本书适合用于高等院校开展的ICPC、CCPC等算法竞赛培训,中学NOI信息学竞赛培训,以及需要学习算法、提高计算思维的计算机工作者。
随着机器视觉技术的飞速发展,大量需要使用机器视觉代替人工检测的需求应运而生。Halcon在开发机器视觉项目中表现出的高效性和稳定性,使其应用范围非常广泛。本书将针对机器视觉的原理和算法,以及如何应用算法解决问题进行探讨和说明,并利用Halcon对各种机器视觉算法进行举例,让读者全面、深入、透彻地理解Halcon机器视觉开发过程中的各种常用算法的原理及其应用方法,提高实际开发水平和项目实战能力。同时,也为机器视觉项目的管理者提供项目管理和技术参考。 《Halcon机器视觉算法原理与编程实战》适合需要全面学习机器视觉算法的初学者,希望掌握Halcon进行机器视觉项目开发的程序员,需要了解机器视觉项目开发方法的工业客户、机器视觉软件开发项目经理、专业培训机构的学员,以及对机器视觉算法兴趣浓厚的人员阅读。
《算法竞赛入门经典 算法实现》精选《算法竞赛入门经典(第2版)》和《算法竞赛入门经典 训练指南(升级版)》中的经典题目,按算法要点和竞赛考点重新进行分拆和归类,提供了240余套简洁、高效、规范的完整代码模板。此外,也加入了一些虽然未在两本书中出现,但实际上对初学者入门非常重要的题目代码。借助于这些模板,读者在练习环节和比赛时,可大大减轻因来回琢磨代码实现细节而导致调试时间大幅增加的压力。 《算法竞赛入门经典 算法实现》共分7章,第1章介绍C 编程基础与STL,第2章介绍算法设计与优化,第3章介绍数学相关算法,第4章介绍数据结构,第5章介绍字符串,第6章介绍计算几何,第7章介绍图论。 《算法竞赛入门经典 算法实现》题目覆盖了ACM/ICPC/NOI/NOIP等算法竞赛的大多数经典题型和细分算法要点,内容全面,信息量
大模型技术掀起了新一轮人工智能浪潮,以ChatGPT 为核心的大模型相关技术可以应用于搜索、对话、内容创作等众多领域,在推荐系统领域的应用也不例外。 本书主要分为3部分。 第1部分简单介绍大模型相关技术,包括大模型的预训练、微调、在线学习、推理、部署等。 第2部分将大模型在传统推荐系统中的应用抽象为4种范式 生成范式、预训练范式、微调范式、直接推荐范式,并对每种范式给出算法原理说明、案例讲解和代码实现。 第3部分以电商场景为例,讲解大模型在电商中的7种应用,包括生成用户兴趣画像、生成个性化商品描述信息、猜你喜欢推荐、关联推荐、冷启动问题、推荐解释和对话式推荐,每种应用场景都包含完整的步骤说明和详细的代码实现,手把手教你构建大模型推荐系统。 本书适合有一定推荐系统基础,期望深入了解和学习大模型技术
《算法竞赛入门笔记》从参赛者的视角出发,结合编者丰富的亲身竞赛经验,系统地介绍算法竞赛的关键知识点和核心技能。《算法竞赛入门笔记》共13章,内容涵盖赛前准备、基础算法、STL容器、搜索技巧、动态规划、图论、数论、博弈论以及真题解析等重要主题。 《算法竞赛入门笔记》的独特之处在于将算法竞赛中的实用知识点与竞赛题目紧密结合,并对高频考点和重要内容进行归纳总结。书中不仅详细讲解理论知识,还结合大量实战例题,使读者能够在实际问题中灵活运用所学算法。此外,书中提供的C 代码模板简洁高效,易于阅读和理解,便于快速上手练习。对于复杂的概念与核心算法,还配以直观的手绘图示说明,大大降低了学习难度,提高了学习效率。 《算法竞赛入门笔记》讲解深入浅出,代码注释详尽,内容丰富实用,特别适合参加各类算法竞赛(
本书图文并茂、通俗易懂,详细讲解常用的算法知识,又融入大量的竞赛实例和解题技巧,可帮助读者熟练应用各种算法解决实际问题。本书总计8章。第1章讲解STL,涉及双端队列、优先队列、位图、集合、映射和STL中的常用函数;第2章讲解实用的数据结构,涉及并查集、倍增、稀疏表、区间最值查询、最近公共祖先、树状数组和线段树;第3章讲解查找算法,涉及散列表、字符串模式匹配和字典树;第4章讲解平衡树,涉及树高与性能、平衡二叉搜索树、树堆和伸展树;第5章讲解图论提高方面的知识,涉及连通图与强连通图、桥与割点、双连通分量的缩点和Tarjan算法;第6章讲解图论算法,涉及最小生成树、最短路径、拓扑排序和关键路径;第7章讲解搜索算法提高方面的知识,涉及剪枝优化、嵌套广度优先搜索、双向广度优先搜索和启发式搜索;第8章讲解动态规划
本书以海量图解的形式,详细讲解常用的数据结构与算法,又融入大量的竞赛实例和解题技巧。通过对本书的学习,读者可掌握12种初级数据结构、15种常用STL函数、10种二叉树和图的应用,以及8种搜索技术,并领悟不同的数据结构和算法的精髓,熟练应用各种算法解决实际问题。 本书总计9章。第1章讲解C 语言基础,包括语法、函数、递归和数组;第2章讲解算法入门知识,包括算法复杂度计算、贪心算法、分治算法和STL应用;第3章讲解线性表的应用,包括顺序表、单链表、双向链表、循环链表和静态链表;第4章讲解栈和队列的应用,包括顺序栈、链栈、顺序队列和链队列;第5章讲解树的应用,包括树的存储、二叉树遍历与还原、哈夫曼编码;第6章讲解图论基础,包括图的存储、图的遍历和图的连通性;第7章讲解图的应用,包括短路径、小生成树、拓扑排序
《智能优化算法与MATLAB编程实践》介绍了国内外新研发的10种智能优化算法,对每种算法的灵感来源、实现过程、函数编程、案例应用都进行了细致描述并给出详细的MATLAB代码,使读者快速掌握智能优化算法的学习和应用方法。 全书共分为12章,前10章分别介绍10种智能优化算法的原理、MATLAB实现、具体函数寻优求解过程和应用案例;第11章列举了23种衡量智能优化算法性能的常见测试函数,并给出MATLAB代码;第12章重点介绍智能优化算法的评价指标体系,选取部分测试函数和文中算法进行测试与分析,并给出完整MATLAB代码,供读者参考。 本书的主要特点为算法新颖,要素齐全,案例丰富,可移植性和实战性强。理论研究和工程技术人员可通过本书快速理解、掌握书中算法,节省大量时间,感兴趣的读者可以在此基础上进行深入研究。 本书可作为本科生、研究生和教
内容介绍 本书基于Python全面介绍了机器学习在信贷风控领域的应用与实践,从原理、算法与工程实践3个维度全面展开,包含21种实用算法和26个解决方案。 作者是智能风控、人工智能和算法领域的专家,曾在多家知名金融科技企业从事风控算法方面的研究与实践,经验丰富,本书得到了风控领域9位专家的高度评价。 全书一共8章,每个章节都由问题、算法、案例三部分组成,具有系统性和实战性。 第1-2章讲解了信贷业务的基础知识以及常用的规则引擎、信用评估引擎的建模方法。 第3章以项目冷启动为背景,讲解了风控领域应用广泛的迁移学习方法。 第4-5章介绍了幸存者偏差与不均衡学习中所使用的无监督学习与半监督学习方法。 第6章阐述了无监督的异常识别算法,该算法常用于数据清洗与冷启动项目,是反欺诈引擎中常用的个体欺诈检测方法。 第7章分享了一
《因果推理:基础与学习算法》从概率统计的角度入手,分析了因果推理的假设,揭示这些假设所暗示的因果推理和学习的目的。本书分别论述了两个变量和多变量情况下的因果模型、学习因果模型及其与机器学习的关系,讨论了因果推理隐藏变量有关的问题、时间系列的因果分析。 《因果推理:基础与学习算法》可作为高等院校人工智能和计算机科学等相关专业高年级本科生和硕士研究生的教材,也可供研究机器学习、因果推理的技术人员参考。
本书以算法设计策略和算法分析方法为知识单元,将计算机经典问题与算法设计方法和技术技巧结合,系统介绍算法设计基础与技术及其经典问题应用。全书共9章,主要内容包括:算法和算法性能的基础知识,算法分析的基本数学方法,递归与分治、动态规划、贪婪算法、回溯法、分支限界法、随机算法、神经网络智能算法等不同算法设计策略,提供了相关算法设计技术和有效的算法分析,以及大量的详细实例和应用,同时对NPC和NP完全问题给出分析。 本书可供高等院校计算机算法设计与分析相关课程的教学使用,也可为计算机理论研究人员、计算机算法设计人员提供参考。
本书是用轻松有趣的方法学习算法的入门指南。按照算法策略分为8章。第1章以算法之美、趣味故事引入算法,讲解算法复杂度的计算方法,以及爆炸性增量问题。2~7章讲解经典算法,包括贪心算法、分治算法、动态规划算法、回溯法、分支限界法、网络流算法。第8章讲解实际应用中的算法和高频面试算法,包括启发式搜索、敏感词过滤、LRU算法、快慢指针、单调栈、单调队列、零钱兑换、股票交易等。每一种经典算法都有4~8个实例,多数按照问题分析、算法设计、完美图解、算法详解、算法分析及优化拓展的流程进行讲解。全书讲解清晰,通俗易懂,紧扣工程教育认证的要求和实用性,力求满足新工科人才培养的需要。 本书为河南省 十四五 普通高等教育规划教材,提供了丰富的教学资源与答疑服务,包括源代码、课件、教案、习题、在线答疑和在线测试系
本书通过主人公小灰的心路历程,用漫画的形式讲述了算法和数据结构的基础知识,复杂多变的算法面试题目及算法的实际应用场景。首先介绍了算法和数据结构的总体概念,告诉大家算法是什么,数据结构又是什么,都有哪些用途,如何分析时间复杂度,如何分析空间复杂度。第二章 介绍了*基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。第三章 介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉树的特殊形式二叉堆和优先队列的应用。第四章 介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。第五章 介绍了十余种职场上流行的算法面试题目及详细的解题思路。例如怎样判断链表有环、怎样计算大整数加法等。第六章 介绍了算法在职场上的一些应用,例如使用LRU算法来淘汰冷数据,使用Bitmap算法
《算法零基础一本通(Python版)》使用 Python 指导读者从零开始学习算法 :由基础数据结构开始,逐步解说信息安全算法,*后也讲解了人工智能入门领域的 KNN 和 K-means 算法。《算法零基础一本通(Python版)》包含约 120 个程序实例,使用约 600 张完整图例,深入讲解了 7 种数据结构和数十种算法,此外也针对国内外著名公司招聘程序员的算法考题做了讲解。《算法零基础一本通(Python版)》实用性强、案例丰富,适合有一定 Python 基础的读者使用,也可作为大中专院校及培训机构的参考教材。
演化学习利用演化算法求解机器学习中的复杂优化问题, 在实践中取得了许多成功, 但因其缺少坚实的理论基础, 在很长时期内未获得机器学习社区的广泛接受. 本书主要内容为三位作者在这个方向上过去二十年中主要工作的总结. 全书共18 章, 分为四个部分: 部分(第1~2 章) 简要介绍演化学习和一些关于理论研究的预备知识; 第二部分(第3~6章) 介绍用于分析运行时间复杂度和逼近能力这两个演化学习的基本理论性质的通用工具; 第三部分(第7~12 章) 介绍演化学习关键因素对算法性能影响的一系列理论结果, 包括交叉算子、解的表示、非精确适应度评估、种群的影响等; 第四部分(第13~18 章) 介绍一系列基于理论结果启发的具有一定理论保障的演化学习算法. 本书适合对演化学习感兴趣的研究人员、学生和实践者阅读. 书中第二部分内容或可为有兴趣进一步探索演化学习理