本书理论结合实践,通过综合运用图、表、文字、代码、解析等多种形式深入浅出地讲解了算法思想、算法结构设计与实践应用,并为大部分章节的算法提供了有趣的竞赛真题及解析,帮助读者学习算法的核心思想,提高实践动手能力。 全书共9章,内容包括算法概述、递归算法与分治法、动态规划算法、贪心算法、搜索算法、网络流算法、随机化算法、群体智能优化算法及算法竞赛真题自测与解析。 本书配有丰富的在线资源,包括在线课堂、在线真题自测、在线考试、在线自动判题、在线解题视频等线上资源,并提供教学课件、课堂手册、课后习题参考笞案、实例源代码等教学资源,方便教师投课和开展教学活动。 本书适合作为计算机科学与技术、软件工程、人工智能、数据科学与大数据分析等专业大学生、研究生的教材。也可以作为数学建模和程序设计竞赛
《中学生计算机程序算法入门:例题精析与训练》精选Atcoder竞赛中的训练题目,初步探讨了CSP-J组认证中常见的简单算法和计算机数学问题,内容涵盖排序、枚举、模拟、二分、贪心、搜索、数据结构、动态规划、数论、组合数学等多个领域,以及C 中STL的高效使用方法。这些内容是算法竞赛中不可或缺的知识,旨在帮助读者培养计算思维,初步掌握简单算法问题的思维方法和实现技巧。
本书是 逻辑与形而上学教科书系列 中的一本。递归论是数理逻辑的主要分支之一。本书介绍了递归论的基础知识,以及某些有影响的问题与经典构造。本书共分5章。*章介绍了图灵机、递归、递归可枚举等概念以及相关的定理。第二章列举了一些重要的不可判定问题,其中包括希尔伯特第十问题(丢番图整数解判定问题)的否定性结果(即马季亚谢维奇定理)和它的完整证明。第三章介绍了递归论度理论的核心概念和基本事实。在第四章中,读者可以找到递归论中经典的构造技巧 尾节扩张(算术力迫)和有穷损害优先方法。第五章简单介绍了递归论的当前热点 算法随机性理论的基本概念,其中包含马丁-洛夫随机性的几个等价刻画。本书可以作为递归论导论课程的教材,以期为进一步学习与研究递归论建立兴趣并打下基础。本书也可以帮助有兴趣的读者了解递
智能优化算法在解决大空间、非线性、全局寻优、组合优化等复杂问题方面具有独特的优势,因而得到了国内外学者的广泛关注,并在信号处理、图像处理、生产调度、任务分配、模式识别、自动控制和机械设计等众多领域得到了成功应用。本书介绍了8种经典智能优化算法 遗传算法、差分进化算法、免疫算法、蚁群算法、粒子群算法、模拟退火算法、禁忌搜索算法和神经网络算法的来源、原理、算法流程和关键参数说明,并给出了具体的MATLAB仿真实例。对于要用这些算法工具来解决具体问题的理论研究和工程技术人员,通过本书可以节省大量查询资料和编写程序的时间,通过仿真实例可以更深入地理解、快速地掌握这些算法。
随着复杂网络研究的深入发展和研究领域的不断 扩展,其应用日益广泛。近年来各类数学建模竞赛中 ,基于复杂网络的题目层出不穷,但目前大部分数学 建模书籍中都没有涉及复杂网络的相关内容,而复杂 网络方面的专著偏重于基础理论和方法,涉及算法程 序实现的很少。 将基本理论和计算机算法实现相结合正是本书编 写的初衷。孙玺菁、司守奎编著的《复杂网络算法与 应用》共计9章,主要涉及复杂网络静态特征,各种 网络模型,复杂网络上的传播模型和动力学分析,复 杂网络上的同步研究,复杂网络中的搜索策略,复杂 网络中的社团结构,网络层次分析法,网络博弈论。 基于Matlab给出了作者自主编写的函数和程序,并对 书中出现的大部分例题配备了程序,便于学生从理论 和求解两个角度入手学习复杂网络的相关理论,在学 习中举一反三、
MATLAB计算机视觉与机器认知 这是一本用 MATLAB演示计算机视觉原理的基础理论著作,从*初等的视频图像转换入手,层层递进,理论与实战并重但侧重于实战,借助混合编程及图形用户界面(GUI)设计,以简洁的方式展现了有一定挑战性的视频识别、目标跟踪、行为分析等关键视觉技术;同时扩展到机器认知层面,介绍仪器字符识别、机器故障诊断等有趣的应用,使读者可以在*短的时间内完成入门、进阶、精通与实战的跨越。 本书主编、副主编均在中国科学院、 985工程 大学国家重点实验室从事智能算法设计与应用的研究,部分理论功底扎实的优秀研究生也参加了主要章节的编撰。 本书既可作为算法工程师、高校教师和广大科技工作者的参考资料,也可作为高校相关专业的研究生教材和高年级大学生毕业设计的工具书。
半监督学习是近年来机器学习领域中的热点问题,其研究如何利用少量的标记样本和大量的未标记样本训练学习机器, 并且通过未标记样本来改善学习机器的推广性能。本书致力于分析大数据环境下的具有隐私保护性能的半监督学习算法设计与理论分析。其主要内容包括:图正则化半监督算法的设计与稀疏性研究,如何从理论上给出误差分析;保护用户隐私的熵正则化半监督算法。同时,提出熵正则化半监督算法的误差分析方案,建立其收敛速率。后,展开对设计算法的隐私保护性能分析的研究。