《深度学习》内容介绍:《深度学习》由全球知名的三位专家Ian Goodfellow、Yoshua Bengio 和Aaron Courville撰写,是深度学习领域奠基性的经典教材。全书的内容包括3个部分:第 1部分介绍基本的数学工具和机器学习的概念,它们是深度学习的预备知识;第 2部分系统深入地讲解现今已成熟的深度学习方法和技术;第3部分讨论某些具有前瞻性的方向和想法,它们被公认为是深度学习未来的研究重点。 《深度学习》适合各类读者阅读,包括相关专业的大学生或研究生,以及不具有机器学习或统计背景、但是想要快速补充深度学习知识,以便在实际产品或平台中应用的软件工程师。 《动手学深度学习》内容简介:本书旨在向读者交付有关深度学习的交互式学习体验。书中不仅阐述深度学习的算法原理,还演示它们的实现和运行。与传统图书不同,本书的每一节都是一个可以
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
《神经网络与深度学习:案例与实践》是《神经网络与深度学习》(蒲公英书)的配套实践书,由复旦大学邱锡鹏教授和百度飞桨团队合作完成。本书在章节设计上和《神经网络与深度学习》一一对应,并以模型解读+案例实践的形式进行介绍。模型解读主要聚焦如何从零开始一步步实现深度学习中的各种模型和算法,并结合简单的任务来加深读者对模型和算法的理解;案例实践主要强调如何使用飞桨预定义API来更好地完成实际任务,会涉及一些数据预处理问题。建议读者将本书和《神经网络与深度学习》结合阅读,在动手实践中更深入地理解深度学习的模型和原理。
深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。 《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行! 主要内容 ● 选择正确的深度学习组件 ● 训练和评估
[内容简介]《为机器立心》每每站在 命运的十字路口,我们总会听到来自历史的叩问。无论是“李约瑟难题”“钱学森之问”“杨振宁三问”,还是 的人工智能“中国之问”,都考验着我们 战略方向的确立和科学家的使命感。要交出一份满意的答卷,就要走出一条属于我们自己的路,一条底层逻辑自主可控的创新之路,走人工智能与人类价值观对齐的创新之路,走不随大流、坚信人工智能的“中国时代”必将到来的创新之路。 《为机器立心》的主题是迈向通用人工智能的中国路线,让AI不再缺“心”,点亮人工智能的“中国时刻”。在书中,朱松纯教授解答了什么是通用人工智能、如何认清智能的本质、如何为人工智能找到统一理论与认知架构,进而为机器立“心”等重要问题。全书共分为两大部分。 部分“厘清通用人工智能的3大关键迷思”:ChatGPT等大模型
《PyTorch计算机视觉实战:目标检测、图像处理与深度学习》 深度学习是近年来计算机视觉应用在多个方面取得进步的驱动力。本书以实践为驱动,结合具体应用场景,基于真实数据集全面系统地介绍如何使用PyTorch解决50多个计算机视觉问题。 首先,你将学习使用NumPy和PyTorch从头开始构建神经网络(NN),并了解调整神经网络超参数的最佳实践。然后,你将学习如何使用卷积神经网络(CNN)和迁移学习完成图像分类任务,并理解其中的工作原理。随后,你将学习二维和三维多目标检测、图像分割、人体姿态估计等多个实际任务,并使用R-CNN、Fast R-CNN、Faster R-CNN、SSD、YOLO、U-Net、Mask R-CNN、Detectron2等框架实现这些任务。在自编码器和GAN部分,本书将指导你学习面部表情替换、面部图像生成和面部表情处理技术。之后,你将学习如何将计算机视觉与NLP技术(如LSTM、transfor
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分 地践行了“现代”理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
本书全面阐述了现代因果关系分析。它展示了因果关系是如何从一个模糊的概念发展成为一个数学理论,并在统计学、人工智能、经济学、哲学、认知科学、卫生和社会科学等领域有重要的应用。
《ChatGPT原理与实战:大型语言模型的算法、技术和私有化》 赞誉 前言 第1章 了解ChatGPT1 1.1 ChatGPT的由来1 1.1.1 什么是ChatGPT2 1.1.2 ChatGPT的发展历史2 1.2 ChatGPT的工作流程3 1.3 ChatGPT用例3 1.3.1 日常任务4 1.3.2 编写代码5 1.3.3 文本生成6 1.3.4 办公自动化9 1.4 本章小结10 第2章 ChatGPT原理解构11 2.1 背景知识11 2.1.1 自然语言处理的发展历程12 2.1.2 大型语言模型的发展历程14 2.2 ChatGPT同类产品18 2.2.1 BlenderBot 3.018 2.2.2 LaMDA20 2.2.3 Sparrow23 2.3 ChatGPT的工作原理25 2.3.1 预训练与提示学习阶段26 2.3.2 结果评价与奖励建模阶段28 2.3.3 强化学习与自我进化阶段28 2.4 算法细节29 2.4.1 标注数据29 2.4.2 建模思路30 2.4.3 存在的问题30 2.5 关于ChatGPT的思考31 2.6 本章小结32 第3章 预训练语言模型33 3.1 Transformer结构33 3.2 基于Encoder结构的模型
本书是人工智能专业基础全面的解读,作者陆汝钤院士在知识工程和基于知识的软件工程方面做了系统的、创造性的工作,是我国该领域研究的开拓者之一。倡导并主持完成了以软件的机械化生成和移植为目标的系列软件计划(XR计划),推动了当时国产机软件缺乏问题的解决。 本书首次把异构型DAI和机器辩论引进人工智能领域。研究出基于类自然语言理解的知识自动获取方法,把ICAI生成技术推进到以自动知识获取为特征的第三代,并开发出基于知识的应用软件自动生成技术。在形式语义学方面研究了逻辑语义、代数语义和分布式语义,证明了任意Horn子句集的模型论语义和小不动点语义的等价性;给出了能描述动态控制结构的基调式代数语义;把平面的Petri网扩展成多页的Petri/Riemann网(P/R网)作为进程模型,获得了演算的真并发结构。 对于希望学习了解人工
作为浙江省委、省zheng府深入实施创新驱动发展战略、探索xin型举国体制浙江路径的重大科技创新平台,之江实验室勇闯科研“无人区”,基于智能计算与材料、天文、制药、育种等前沿学科交叉融合的研究成果,组织编写 “之江实验室智能计算丛书” ,以期在更大范围内凝聚共识,利用智能计算技术,服务我国社会经济高质量发展。 丛书由朱世强教授担任丛书主编,对之江实验室关于智能计算的理解和行动进行全面介绍。《智能计算》为总论,各分册分别论述了重大科学装置“智能计算数字反应堆”与材料、天文、制药、育种等学科深度耦合的应用成果。丛书系统梳理了智能计算的理论体系、技术体系和标准体系,将智能计算与国家重大战略需求和新兴学科交叉融合,促进多学科对综合性问题的协同攻关,成为智能计算“之江定义”的
本书以案例介绍的形式为主,从基础创新、产业落地、防疫抗疫、应用场景等多个方面展现上海人工智能发展情况。这是一份地区发展人工智能产业的 建议书 ,更是一份企业商业落地人工智能的 指导手册 。以下为节选《AI加速键:上海人工智能创新发展探索与实践案例集》的部分章节和内容。 家事国事天下事,五位一体读AI 近年来,全球 AI 领域技术不断取得突破性进展,产业热度不断提升,人工智能技术越来越深刻地与各行各业的融合渗透,并助力传统行业实现跨越式升级,成为驱动新一代产业革命的核心动力。我国的人工智能发展进入快车道,并加速向智能经济社会迈进。 家事国事天下事,报告从全球 广角 出发,层层 聚焦 ,深入解读了全球AI、中国AI、上海AI的发展概况,并从技术、政策、企业、投资、学术五大维度进行解读。 按下AI加速键,亮出