关于未来20年的预言,一幅走向奇点的未来生存指南与路线图。 继《奇点临近》之后,雷·库兹韦尔的又一部里程碑式作品!探讨以人工智能、生物技术及纳米机器人为代表的指数型技术将如何推动人类走向奇点!库兹韦尔通过扎实的论证,在书中重申了他对未来20年的大胆预言——AI将在何时通过图灵测试;人类将在何时迈入奇点;持续发展的人机融合技术将如何使人类智能增强数百万倍;人类寿命如何实现延长, 目前120岁的生物学限制;可再生能源技术的不断完善将如何满足我们所有的能源需求;指数型技术将如何改变人类生活的方方面面等。我们即将迈入认知、生活乃至生命被重构的时代,一切都将重新开始!生物技术、纳米技术、人工智能技术将如何重塑未来,一场关涉未来商业、生活、工作、健康等领域的超ji预言。 不断融合的指数增长的技术趋势
本书全面叙述了蒙特卡罗方法,包括序贯蒙特卡罗方法、马尔可夫链蒙特卡罗方法基础、Metropolis算法及其变体、吉布斯采样器及其变体、聚类采样方法、马尔可夫链蒙特卡罗的收敛性分析、数据驱动的马尔可夫链蒙特卡罗方法、哈密顿和朗之万蒙特卡罗方法、随机梯度学习和可视化能级图等。为了便于学习,每章都包含了不同领域的代表性应用实例。本书旨在统计学和计算机科学之间架起一座桥梁以弥合它们之间的鸿沟,以便将其应用于计算机视觉、计算机图形学、机器学习、机器人学、人工智能等领域解决 广泛的问题,同时使这些领域的科学家和工程师们 容易地利用蒙特卡罗方法加强他们的研究。
无
本书系统介绍了视觉 SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动、非线性优化,又包括计算机视觉的算法实现,例如多视图几何、回环检测等。此外,我们还提供了大量的实例代码供读者学习研究,从而更深入地掌握这些内容。本书可以作为对 SLAM 感兴趣的研究人员的入门自学材料,也可以作为 SLAM 相关的高校本科生或研究生课程教材使用。
图神经网络(GNN)是基于深度学习的图数据处理方法,因其的性能而受到广泛关注。本书全面介绍了GNN的基本概念、具体模型和实际应用。书中首先概述数学基础和神经网络以及图神经网络的基本概念,接着介绍不同种类的GNN,包括卷积图神经网络、循环图神经网络、图注意力网络、图残差网络,以及几个通用框架。此外,本书还介绍了GNN在结构化场景、非结构化场景和其他场景中的应用。读完本书,你将对GNN的成果和发展方向有较为透彻的认识。
本书系统介绍了视觉 SLAM(同时定位与地图构建)所需的基本知识与核心算法,既包括数学理论基础,如三维空间的刚体运动、非线性优化,又包括计算机视觉的算法实现,例如多视图几何、回环检测等。此外,我们还提供了大量的实例代码供读者学习研究,从而 深入地掌握这些内容。本书可以作为对 SLAM 感兴趣的研究人员的入门自学材料,也可以作为 SLAM 相关的高校本科生或研究生课程教材使用。
预训练语言模型属于人工智能领域中自然语言处理领域的一个细分。 本书主要介绍预训练语言模型。预训练语言模型是自然语言处理领域的重要突破,得到了越来越广泛的关注,相关研究者和从业人员在实际应用的过程中,亟需一本理论翔实、代码细节充分的参考书。本书详细梳理了预训练语言模型的基本概念和理论基础,并通过实际代码的讲解, 阐述了具有代表性的预训练语言模型的实现细节,非常适合需要快速、全面掌握预训练语言模型的从业者阅读。
深度学习在推荐系统领域掀起了一场技术革命,本书从深度学习推荐模型、Embedding技术、推荐系统工程实现、模型评估体系、业界前沿实践等几个方面介绍了这场技术革命中的主流技术要点。《深度学习推荐系统》既适合推荐系统、计算广告和搜索领域的从业者阅读,也适合人工智能相关专业的本科生、研究生、博士生阅读,帮助他们建立深度学习推荐系统的技术框架,通过学习前沿案例加强深度学习理论与推荐系统工程实践的融合能力。
本书全面、深入地探讨了人工智能(AI)领域的理论和实践,以统一的风格将当今流行的人工智能思想和术语融合到引起广泛关注的应用中,真正做到理论和实践相结合。全书分7个部分,共28章,理论部分介绍了人工智能研究的主要理论和方法并追溯了两千多年前的相关思想,内容主要包括逻辑、概率和连续数学,感知、推理、学习和行动,公平、信任、社会公益和安全;实践部分 地践行了“现代”理念,实际应用选择当下热度较高的微电子设备、机器人行星探测器、拥有几十亿用户的在线服务、AlphaZero、人形机器人、自动驾驶、人工智能辅助医疗等。本书适合作为高等院校人工智能相关专业本科生和研究生的教材,也可以作为相关领域专业人员的参考书。
通常来说,人工智能(ArtificialIntelligence,AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能的研究领域包括机器人、语音识别、图像识别、自然语言处理和专家系统等。机器学习就是用算法解析数据,不断学习,对世界中发生的事做出判断和预测的一项技术。生活中很多机器学习的书籍只注重算法理论方法,并没有注重算法的落地。本书是初学者期待的入门书,书中有很多的示例可以帮助初学者快速上手。本书分为3个部分:第1章和第2章是人工智能的数学基础,主要介绍了机器学习的概念、Python开发环境的搭建、机器学习bibei的数学知识,以及线性代数和概率论的相关知识;第3~12章主要介绍了回归模型、分类模型、聚类模型、半监督模型的建立和相关算法的理论,以及如何使用sklearn具体实现相关算法模
本书从数学、哲学、计算机科学、神经科学和人工智能等角度,全面阐述了贝叶斯理论背后的基础知识、思维方式和丰富哲理。贝叶斯定理一旦与算法相结合,就不再是一套枯燥的数学理论或认识论,而变成了应用广泛的知识宝库,催生了众多现代数学定理,以及令人称道的实践成果。作者一改传统的数学探讨模式,不仅展现了贝叶斯理论背后的科学思想,还阐述了它与人类思维之间的深刻关系,并对各相关领域和人工智能的发展进行了展望。本书适合喜爱数学、算法、机器学习、人工智能、逻辑学和哲学的大众读者,读者无须过多数学和算法知识就能读懂。
本书第1章从工业机器人坐标系概念入手,介绍了机器人TCP、工件坐标系的计算原理与ABB工业机器人坐标系指令/函数的使用;第2章介绍了工业机器人D-H模型及ABB工业机器人正向运动学的计算,帮助读者从理论层面了解工业机器人的运动机理;第3章详细介绍了ABB工业机器人编程(RAPID)的内核与应用技巧,以帮助读者深入了解ABB工业机器人的相关指令;第4~13章就ABB工业机器人的进阶应用功能做了介绍与实例讲解,其中包括MultiMove(多机协同)、RobotStudio在线编程、RobotStudio数字孪生、RobotLoad负载测试软件、ModBus/TCP、弧焊、力控、外轴/变位机配置与Standalone控制柜(Gantry机器人)、RobotWare 6控制系统中文交互、基于视觉的输送链跟踪等; 4章介绍了ABB工业机器人 推出的Omnicore机器人控制系统与RobotWare 6控制系统的异同,并针对Robot Web Service 2.0、Omnicore自定义App等新功能做
本书以深入浅出的方式介绍近年来人工智能领域 热门的技术——多模态大模型的技术方法、开源平台和应用场景,并详细阐述因果推理、世界模型及多智能体与具身智能等前沿技术领域,有助于读者全面了解多模态大模型的特点及发展方向,对新一代人工智能技术范式和通用人工智能的发展起到重要推动作用。全书共5章,第1章深入探讨 代表性的大模型结构,第2章深度剖析多模态大模型的核心技术,第3章介绍多个具有代表性的多模态大模型,第4章深入分析视觉问答、AIGC 和具身智能这3个典型应用,第5章探讨实现通用人工智能的可行思路。 本书不仅适合高校相关专业高年级本科生和研究生作为教材使用, 是各类IT 从业者的 参考之作。
本书共分为8章,主要内容包括与人工智能相关的数学知识,Python语言所特有的语法和技巧,Docker模型透明无缝地发布的实现,业界 的Git代码版本管理工具,模型开发环境的配置, 人工智能开发工程师常用的IDE开发工具,经典神经网络模型的剖析和分解,RPC远程调用的实现,训练样本的序化组织结构TFRecord,模型的训练、保存和封装发布,模型训练的GPU配置和机制策略的部署,模型从训练到发布的完整示例等。 本书适合有计算机专业和数学专业背景的初、中级开发者阅读,以便快速掌握和驾驭人工智能全栈技术,也适合作为在职人工智能模型开发人员查询时使用的手册级工具用书,还适合作为中职学校、高等院校及培训机构计算机人工智能和大数据等相关专业的教学用书。