本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描
本书是一本有思维方法论启示的书;是一本站在历史的高度, 正面思考科技力量的书;是一本充满想象与预言,但又不失科学论证的书。本书提供了一个崭新的视角:21世纪既是数百年以来科技、创意的顶点,又是对人类终极命运真挚的愿景。 本书特点:奇特与警示的结论,书中六个纪元的划分奇特又富于哲理;严谨与独特的论述方法,通过分析科学发展趋势,演绎并预测未来;警世之语与探讨性对话,通过智者的眼睛去审视自然、科学以及世界;章尾与未来的对话,是一种思想的博弈:通过设想中的未来去理解当今的技术发展和进化中的人类。 本书论述严谨,案例丰富,深入阐释了 奇点 作为一种思潮,其在世界范围内所产生的广泛影响,并介绍了其在哲学、科学、技术、艺术等各个方面所展示的独特魅力。
内容简介这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策者,你都能通过本书系统理解和掌握大模型,从而深刻认识大模型的核心价值和应用潜力,把握住大模型带来的变革和商机。通过阅读本书,我们每个人都能从中收获以下知识:(1)AI的本质和AI发展的4个阶段;(2)大模型的核心技术和大模型的技术进化路线;(3)大模型的算力基础设施和数据基础设施;(4)基座
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。 本书分为两篇: 算法原理篇 详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。 应用实战篇 聚焦于深度学习模型的实际应用,特别是文本和图像生成,以及代码生成的应用实战。通过具体实战项目,如利用Stable Diffusion进行图像生成和Code Llama进行代码生成,提供了微调技术的详细细
内容简介这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。通过阅读本书,你将掌握以下知识:?透彻理解RAG的召回和生成模块算法?高级RAG系统的技巧?RAG系统的各种训练方式方法?深入了解RAG的范式变迁?实战0基础搭建RAG系统?实战高级RAG系统微调与流程搭建
本书涵盖了Transformer在NLP领域的主要应用。首先介绍Transformer模型和Hugging Face 生态系统。然后重点介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。接着深入挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack进行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。最后展示如何从头开始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研究。
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。 本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神经网络)。 本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,帮助读者迅速掌握深度学习的基础知识。本书适合有志于投身人工智能领域的人员阅读,也适合作为高等院校人工智能专业的教学用书。
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。 经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基础模型的组合体,即概率生成模型;第5章和第6章着重介绍这些复杂模型在计算机视觉和自然语言处理两大最常见领域的应用;第7章讲解生成式大语言模型的内在原理并对其发展趋势予以展望。 本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,能够帮助读者迅速掌握深度学习的基础知识。本书适合有
《实战AI大模型》是一本旨在填补人工智能(AI)领域(特别是AI大模型)理论与实践之间鸿沟的实用手册。书中介绍了AI大模型的基础知识和关键技术,如Transformer、BERT、ALBERT、T5、GPT系列、InstructGPT、ChatGPT、GPT 4、PaLM和视觉模型等,并详细解释了这些模型的技术原理、实际应用以及高性能计算(HPC)技术的使用,如并行计算和内存优化。 同时,《实战AI大模型》还提供了实践案例,详细介绍了如何使用Colossal AI训练各种模型。无论是人工智能初学者还是经验丰富的实践者,都能从本书学到实用的知识和技能,从而在迅速发展的AI领域中找到适合自己的方向。
本书基于真实数据集,全面系统地阐述现代计算机视觉实用技术、方法和实践,涵盖50多个计算机视觉问题。全书分为四部分:di一部分(第1~3章)介绍神经网络和PyTorch的基础知识,以及如何使用PyTorch构建并训练神经网络,包括输入数据缩放、批归一化、超参数调整等;第二部分(第4~10章)介绍如何使用卷积神经网络、迁移学习等技术解决更复杂的视觉相关问题,包括图像分类、目标检测和图像分割等;第三部分(第11~13章)介绍各种图像处理技术,包括自编码器模型和各种类型的GAN模型;第四部分(第14~18章)探讨将计算机视觉技术与NLP、强化学习和OpenCV等技术相结合来解决传统问题的新方法。本书内容丰富新颖,语言文字表述清晰,应用实例讲解详细,图例直观形象,适合PyTorch初中级读者及计算机视觉相关技术人员阅读。
随着大模型的发展与应用,深度学习编译器的内涵和外延逐步扩展。与传统编译器相比,深度学习编译器增加了特定于人工智能模型实现的设计与优化。本书共12章。第1章从深度学习的起源、发展与爆发出发,引出深度学习模型的基础概念、深度学习应用的开发流程和深度学习框架。第2章介绍深度学习运算特征、深度学习硬件平台和深度学习编译技术,通过分析典型深度学习编译器的架构,给出深度学习编译器的一般架构。第3章介绍面向深度学习应用开发的编程模型和编程接口。第4章从计算图的构成、分类、转换和分析4个角度,介绍深度学习编译器前端的工作流程。第5章从中间表示的概念、分类和设计3个角度,分析深度学习编译器中间表示的设计方法和重要作用。第6~12章介绍深度学习编译优化,包括自动微分、计算图优化、内存分配与优化、算子选择与生成、代码生成与
ChatGPT能够辅助用户完成从数据收集、预处理、分析到报告撰写的全过程,大大降低了数据分析的门槛。 本书共分为 12 章,内容包括ChatGPT 的注册与登录、提示词的设计、GPTs、数据的收集与预处理、特征工程、各类数据分析方法(包括对比分析、分组分析、回归分析、分类分析和聚类分析等)、数据可视化,以及如何利用 ChatGPT 撰写数据分析报告等。每章都提供了丰富的示例和实用技巧,旨在帮助读者掌握利用ChatGPT 进行数据分析的方法,提高数据处理和分析的效率。 《ChatGPT数据分析(视频案例版)》适合数据分析师、市场研究人员、高校师生、科研人员以及任何对数据分析感兴趣的读者。通过阅读本书,读者不仅能学习到如何使用 ChatGPT 进行数据分析,还能深刻理解数据分析的核心概念和应用场景,从而在实践中更加游刃有余。
本书深入探讨了人工智能中的一个新兴领 具身智能,即智能系统与物理身体的结合。本书系统阐述了具身智能的理论框架,包括身体与思维的互动、感知与行为的统一性,以及智能体如何通过与环境的互动来学习写适应。书中详细介绍了自由能原理,这是理解生命体和智能系统组织原则的关键理论,同时探讨了这一原理在人工智能设计中的应用,如强化学习感知与行动的和谐统一等。此外,本书还讨论了多学科视角下的智能解读,以及空间智能与具身智能的整合策略,为读者提供了一个全面了解人工智能未来发展趋势的窗口。
本书是一本ChatGPT的实战手册,全面细致地介绍了ChatGPT的背景与发展历程、能力与特点,以及如何让ChatGPT助力工作与学习。 本书共8章:ChatGPT印象、ChatGPT之心、阅读与写作、创意生成、英语学习、辅助编程、办公自动化、ChatGPT的实用工具。其中第3~8章是本书核心内容,充分介绍了如何使用ChatGPT这个强大的AI工具。在内容组织上,本书将具体场景、人的需求,如市场营销人员如何生成好的文案创意,英语学习者如何练习与反馈,家长们如何辅导孩子作业与拓展思路等,与ChatGPT的应用相结合。在内容结构上,本书遵循 授人以鱼,不如授人以渔 的原则,先介绍基础的知识和方法,再进入具体的例子场景。这样,读者可以在打好基础,获得一些启发与思考后,再开始自己的实践。 虽然本书围绕ChatGPT展开,但其中的知识与方法、众多的实例具有很强的通用性,能够帮助
内容介绍这是一本深入讲解智能风控理论体系和风控全生命周期业务实践的著作。作者基于在银行业10余年的风控经验,首先详细讲解了“大数据、模型、风控平台”三位一体的智能风控体系,能为风控实践提供扎实的理论指导;然后围绕风控的全生命周期,从贷前评估、贷中监控、贷后管理以及智能反欺诈、智能催收等角度全面讲解了智能风控的业务实践,深刻揭示了智能风控体系的精髓。第1~2章全面而深入地探讨了智能风控的背景知识:首先对基础信贷业务进行了细致解析,读者可以从中了解其运作方式和重要性;然后,梳理了智能风控是如何随着技术的进步和市场的需求逐渐成熟和完善的。第3~5章围绕“数据、模型、风控平台”三位一体的智能风控理论体系展开:首先介绍了内部数据、外部数据、个人征信数据在智能风控中的应用,以及智能数据体系的构建
本书旨在帮助没有任何人工智能技术基础的工程师们全面掌握AIGC的底层技术原理,以及大语言模型、扩散模型和多模态模型的原理与实践。本书的核心价值是,首先为想学习各种大模型的读者打下坚实的技术基础,然后再根据自己的研究方向展开深入的学习,达到事半功倍的效果。通过阅读本书,您将学习如下内容:(1)AIGC技术基础深入了解神经网络的基础知识,包括卷积神经网络和循环神经网络的原理与应用。并通过学习神经网络的优化方法,您将掌握如何优化和提升神经网络的性能。 (2)图像生成模型包括从自动编码器(AE)、变分自编码器(VAE)、生成对抗网络(GAN)等图像生成模型。通过学习优化方法,如WGAN、WGAN-WP、StyleGAN等,您将掌握如何提高图像生成模型的质量和稳定性。同时,了解图像生成模型的应用,如迁移学习、风格迁移等,让您轻松实现
本书从技术、应用、安全和监管等维度全面讲解了金融机构应该如何正确地认知和实践AIGC,以此加速实现数字化和智能化。 作者有超过20年的金融科技工作经验,同时有丰富的AI大模型创新和应用经验,在本书中,作者将自己的丰富经验、深入洞察以及国内外的经典案例相结合,为金融行业的AIGC实践指明了方向,提供了方法论。 全书一共10章,具体包含以下内容: AIGC技术演变与应用典型落地场景(第1、2章) 首先,深入探究大语言模型的过去、现在与未来,剖析AIGC三大核心技术的发展演变,以及算力、算法、数据在其中的关键作用和相互影响。然后,进一步探讨AIGC技术与应用在典型场景中的具体落地,帮助读者全面理解AIGC的基本原理,为迎接AI新时代夯实理论基础。 AIGC提升金融业内外部效率与方法论(第3~5章) 分析AIGC对提升金融业内部生产效率和外部服
这是一本能指导读者快速掌握PyTorch和深度学习的著作,从PyTorch的原理到应用,从深度学习到强化学习,本书提供了全栈解决方案。 第1版上市后销量和口碑俱佳,是深度学习领域的畅销书,被誉为PyTorch领域的标准著作。第2版在第1版的基础上,去芜存菁,与时具进,根据PyTorch新版本全面升级,技术性、实战性、针对性、丰富性、易读性均得到了进一步提升,必定能帮助读者更轻松、更高效地进入深度学习的世界。 全书一共19章,在结构上分为三大部分: 第1部分(第1~4章) PyTorch基础 首先有针对性地讲解了Python和PyTorch的基石NumPy中的关键知识,然后详细讲解了PyTorch的基础知识、神经网络工具箱和数据处理工具箱等内容,帮助读者快速了解和掌握PyTorch。 第二部分(第5~10章) 深度学习基础 依次讲解了机器学习、视觉处理、自然语言处理、注意力机制、目标检测、
本书反映了过去十年间机器人领域的一系列变化,通过案例研究和例题来讲解机器人运动学、动力学和控制。本书对机器人控制和数学基础的讲解尤为深入且系统,首先介绍机器人学和运动控制的基础,之后深入研究控制理论和非线性系统分析,并以双连杆机器人为例将本书所涵盖的内容融为一体。第2版新增了关于移动机器人和欠驱动机器人的两章,修订了关于视觉、控制和运动规划的部分,涵盖碰撞躲避和轨迹优化等内容。此外,本书还扩展了大量例题、仿真、习题和案例研究,广泛适用于本科生和研究生的教学。
本书是在《模式识别与人工智能(基于MATLAB)》的基础上写作而成,为了适应模式识别算法的新发展、满足各层次读者的学习需求,在原有基础上增加了大量新内容,包括细化各章的内容和增加三种新算法。本书广泛涉及统计学、模糊控制、神经网络、人工智能等学科的思想和理论,将模式识别与人工智能理论和实际应用相结合,针对具体案例进行算法设计和分析,并运用MATLAB程序实现。全书共分为12章,内容包括模式识别概述、贝叶斯分类器设计、判别函数分类器设计、聚类分析、模糊聚类分析、神经网络聚类设计、模拟退火算法聚类设计、遗传算法聚类设计、蚁群算法聚类设计、粒子群算法聚类设计、免疫算法、禁忌搜索算法。覆盖了各种常用的模式识别技术。 本书可作为高等院校自动化、计算机、电子信息类等专业研究生和高年级本科生的教材,也可作为各
全书分为4部分。第1部分对基础知识展开讲解,包括Linux基础和ROS入门。第2部分主要关注一个实际的机器人中的硬件和核心传感器模块的构造,重点讲解机器人上的传感器、差分底盘、树莓派主板开发方面的知识。第3部分是SLAM地图构建的核心算法,SLAM中的数学基础、基于激光的SLAM系统、基于视觉的SLAM系统、混合SLAM系统、新型SLAM系统。第4部分是自主导航相关的核心技术与应用,包括自主导航中的数学基础、基于地图的导航、基于环境探索建图的导航、强化学习在机器人导航中的应用。 通过阅读本书,读者不仅可以自己设计出一套SLAM导航机器人出来,还可以在软硬件结合的环境中提高自己的C++/Python/Java方面的编程能力,同时还可以接触到流行的SLAM算法的实际应用。
注意 作为一切思维活动的起点,一直是哲学、心理学和认知神经科学的重点研究对象。随着计算机技术的发展,人类对注意力机制的模拟和应用成为计算机科学领域的热点研究方向 让计算机能够具有类似人类的注意力机制,使其能够有效地应用于对数据的理解和分析。Transformer模型诞生后,注意力机制在人工智能各大重要领域的研究和应用更是如火如荼,成果丰硕。 《人工智能注意力机制:体系、模型与算法剖析》从注意力机制这一重要角度入手,阐述注意力机制的产生背景和发展历程,通过详实的理论剖析,以深入浅出的方式着重介绍注意力机制在计算机视觉、自然语言处理,以及多模态机器学习三大人工智能方向中的应用思路、模型与算法。 《人工智能注意力机制:体系、模型与算法剖析》以人工智能相关专业研究人员,特别是计算机视觉与自然语言处理
书拟根据 厘清内涵、促进交叉、赋能应用 来研究讨论通专融合的人工智能交叉课程体系。厘清内涵指确立专业培养定位和专业培养方向,重视数学与统计知识(如概率论、微积分、线性代数、优化求解和矩阵变换等)、计算机编程和系统能力(如程序设计、算法分析和系统等)以及人工智能基础知识(如逻辑推理、机器学习、强化学习、控制与博弈决策等);促进交叉指 专、通、交 课程内容贯穿,即核心课程中既要有 专业化 课程