本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,部分介绍深度学习的基础知识和预备知识,并由线性模型引出简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用。 本书同时覆盖深度学习的方法和实践,主要面向在校大学生、技术人员和研究人员。阅读本书需要读者了解基本的Python编程知识及预备知识中描
本书是一本有思维方法论启示的书;是一本站在历史的高度, 正面思考科技力量的书;是一本充满想象与预言,但又不失科学论证的书。本书提供了一个崭新的视角:21世纪既是数百年以来科技、创意的顶点,又是对人类终极命运真挚的愿景。 本书特点:奇特与警示的结论,书中六个纪元的划分奇特又富于哲理;严谨与独特的论述方法,通过分析科学发展趋势,演绎并预测未来;警世之语与探讨性对话,通过智者的眼睛去审视自然、科学以及世界;章尾与未来的对话,是一种思想的博弈:通过设想中的未来去理解当今的技术发展和进化中的人类。 本书论述严谨,案例丰富,深入阐释了 奇点 作为一种思潮,其在世界范围内所产生的广泛影响,并介绍了其在哲学、科学、技术、艺术等各个方面所展示的独特魅力。
如何从零开始,全面了解人工智能(AI)的前世今生? 如何掌握技术,逐步实现人工智能数字化发展? 如何抢占市场,全面发展人工智能产业和设备? 《从零开始学人工智能》通过12个专题、170多个知识点,帮助您从AI小白变成智能高手。 《从零开始学人工智能》详细讲解了人工智能的基本知识和技术制造,再从互联网三大巨头入手,从10个方面重点介绍了在人工智能方面的产业布局,具体包括智能家居、智能手机、智能办公、智能穿戴、智能出行、智能零售和其他领域,希望帮助您快速入门,精通人工智能知识。 《从零开始学人工智能》结构清晰,不仅适合人工智能新手掌握AI的基本方法,快速了解人工智能的相关技术,更适合帮助在人工智能行业遇到瓶颈的技术研究者和企业管理者解决难题,提高自身的专业水平。
人工智能(AI),尤其是生成式语言模型和生成式人工智能(AIGC)模型,正以惊人的速度改变着我们的世界。驾驭这股潮流的关键,莫过于探究自然语言处理(NLP)技术的深奥秘境。本书将带领读者踏上一段扣人心弦的探索之旅,让其亲身感受,并动手搭建语言模型。本书主要内容包括N-Gram,词袋模型(BoW),Word2Vec(W2V),神经概率语言模型(NPLM),循环神经网络(RNN),Seq2Seq(S2S),注意力机制,Transformer,从初代GPT到ChatGPT再到GPT-4等一系列突破性技术的诞生与演进。 本书将以生动活泼的笔触,将枯燥的技术细节化作轻松幽默的故事和缤纷多彩的图画,引领读者穿梭于不同技术的时空,见证自然语言处理技术的传承、演进与蜕变。在这场不断攀登技术新峰的奇妙之旅中,读者不仅能深入理解自然语言处理技术的核心原理,还能自己动手,从零开始搭
内容简介这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。通过阅读本书,你将掌握以下知识:?透彻理解RAG的召回和生成模块算法?高级RAG系统的技巧?RAG系统的各种训练方式方法?深入了解RAG的范式变迁?实战0基础搭建RAG系统?实战高级RAG系统微调与流程搭建
本书系统地介绍了强化学习的原理和实现,是一本理论扎实、落地性强的图书。 本书包含3个部分:部分为强化学习基础,讲解强化学习的基础概念和表格型强化学习方法;第二部分为强化学习进阶,讨论深度强化学习的思维方式、深度价值函数和深度策略学习方法;第三部分为强化学习前沿,介绍学术界在深度强化学习领域的主要关注方向和前沿算法。同时,本书提供配套的线上代码实践平台,展示源码的编写和运行过程,让读者进一步掌握强化学习算法的运行机制。 本书理论与实践并重,在介绍强化学习理论的同时,辅之以线上代码实践平台,帮助读者通过实践加深对理论的理解。本书适合对强化学习感兴趣的高校学生、教师,以及相关行业的开发和研究人员阅读、实践。
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。 本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神经网络)。 本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,帮助读者迅速掌握深度学习的基础知识。本书适合有志于投身人工智能领域的人员阅读,也适合作为高等院校人工智能专业的教学用书。
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的核心知识、原理和内在逻辑。 经过基础篇的学习,想必你已经对深度学习的总体框架有了初步的了解和认识,掌握了深度神经网络从核心概念、常见问题到典型网络的基本知识。本书为核心篇,将带领读者实现从入门到进阶、从理论到实战的跨越。全书共7章,前三章包括复杂CNN、RNN和注意力机制网络,深入详解各类主流模型及其变体;第4章介绍这三类基础模型的组合体,即概率生成模型;第5章和第6章着重介绍这些复杂模型在计算机视觉和自然语言处理两大最常见领域的应用;第7章讲解生成式大语言模型的内在原理并对其发展趋势予以展望。 本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,能够帮助读者迅速掌握深度学习的基础知识。本书适合有
《实战AI大模型》是一本旨在填补人工智能(AI)领域(特别是AI大模型)理论与实践之间鸿沟的实用手册。书中介绍了AI大模型的基础知识和关键技术,如Transformer、BERT、ALBERT、T5、GPT系列、InstructGPT、ChatGPT、GPT 4、PaLM和视觉模型等,并详细解释了这些模型的技术原理、实际应用以及高性能计算(HPC)技术的使用,如并行计算和内存优化。 同时,《实战AI大模型》还提供了实践案例,详细介绍了如何使用Colossal AI训练各种模型。无论是人工智能初学者还是经验丰富的实践者,都能从本书学到实用的知识和技能,从而在迅速发展的AI领域中找到适合自己的方向。
《写好论文:思维模型与AI辅助应用》创新性地将学术写作的思维模型与AI辅助工具相结合,为读者提供了一套全新且实用的学术写作方法,旨在助力读者提高学术写作的质量和水平。 《写好论文:思维模型与AI辅助应用》共9章,每章都聚焦一个特定的思维模型。这些模型包括 顶天立地加两翼 结构模型、选择和确定研究单位的三角模型、OBTQP研究问题模型、细化研究维度的思维罗盘模型、推导文献综述 GAP 的破界创新模型、匹配研究理论的勾连信号模型、适配研究方法的画布模型、非共识研究观点模型和深入解决问题的U型思维模型。对于每个模型,书中都有详细的背景介绍、拆解步骤、应用方法和案例分析,确保读者能够全方位地理解并实际应用这些模型,从而真正掌握学术写作的思维精髓和实践要诀。 《写好论文:思维模型与AI辅助应用》适合学术研究人员、研
这是一本能指引我们每个人赢在AI时代的著作,它将教会我们在各种场景中熟练使用ChatGPT等AI工具和编写提示词,大幅提升我们的工作效率,让我们实现AI普惠,成为AI高手。 ?本书的几位作者都是AI领域的技术专家和应用布道者,本书是他们丰富实践经验的总结。阅读本书,你将获得以下知识和技能: ?认识AICC将给社会和个体带来的深刻影响及其背后的本质,包括AIGC如何引发生产效率革命、如何重新定义脑力劳动、如何调整社会分工、如何重新分配社会价值等; ?ChatGPT/GPT-4、文心一言、Midjourney、Stable Diffusion、DALL E3等主流AIGC工具的配置、使用和选型; ?提示词(Prompt)编写的入门指南、基本原则、黄金公式和进阶技巧; ?AIGC辅助文案写作、文稿翻译、数据分析、邮件撰写、PPT制作、工作总结、知识整理、图片生成等; ?程序设计、艺术设计、游戏开发与设计、自媒
本书全面阐述了现代因果关系分析,展示了因果关系如何从一个模糊的概念发展成为一套数学理论,并广泛用于统计学、人工智能、经济学、哲学、认知科学、卫生科学和社会学等领域。本书提出了一个全面的因果关系理论,它统一了因果关系的概率、操作、反事实和结构方法,并提供了简单的数学工具来研究因果关系和统计关联之间的关系。本书通过融合领域知识、常识约束、文化传承的概念等来补充数据信息,为基于统计的机器学习中遇到的基本问题提供了科学的解决方案。
本书从现代科技伦理的隐喻 黑镜 出发,系统而深入地剖析全球人工智能伦理与治 理发展的理论根源、人工智能落地应用场景中的伦理问题以及全球视野下的人工智能治理 问题。书中既包括对传统西方伦理学的形而上学的研究,也包括人工智能有关实践案例和 国际政策的解读。本书的目的不仅仅是对人工智能伦理和治理问题进行学术性梳理,而更 在于寻求解决真实世界中人工智能伦理与治理问题的路径,是一部在理论和实践层面都非 常有意义的专著。本书不仅讨论技术伦理涉及的伦理学、政治经济学、哲学和社会学等人 文科学思想,还涉及计算机科学、生物学以及医学等自然科学框架,利用跨学科思维深入 探讨如何在人工智能时代形成伦理共识和建立智能社会治理规则,以期帮助智能经济参与 者、人工智能研究和应用开发领域的专业人员以及公共管理决策者
在AI时代,各种各样的工作正逐渐被 AI 所替代,很多人都会担心自己的工作被抢走。日本经济学家野口悠纪雄认为,没有哪个时代的创意价值比现在还高;从某种意义上来说,这也是一个重大的机遇。实际上,很多人都对如何产生新的想法这一问题感兴趣。产生想法并不是一件简单的事情,有些人提出了各种各样的思考方法。但思考并非按照定型的程序来进行。我们却可以发现,在如何思考上是有一定规律可循的。本书首先揭示了关于思考的一些规律,并基于这些规律,提出了如何进行思考的具体意见。 作者通过本书,从原理原则到ZUI新技巧,彻底解释作者所提倡的AI时代的 超 思考法。具体介绍了 不变的思考5法则 、 用智能手机制作的 超 笔记 、即使没有灵感也能想出主意的思考秘诀及思考方法。阅读本书后,一定会想出越来越多的好点子!
本书强调 把 AI作为方法 (AI即 Artifcial Intelligence,人工智能)这一核心理念,旨在引导读者掌握与 AI对话的关键技巧,并将AI融入工作和生活真正体验 AI带给人类的*与便捷。 本书从技术的发展规律人手,探讨了把AI作为方法的*然性和*要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了 AI的强大魅力,通过一系列 召唤术 帮助读者运用AI创造性地完成各种各样的任务,在这个过程中体验和掌握运用AI的核心技巧。 本书适合对 AI有研究兴趣、有使用需求、有产品研发需求或有投资意向的读者阅读。读者可扫描文中的二维码了解本书所介绍的与AI交互的秘诀。
这是一本能指导读者快速掌握PyTorch和深度学习的著作,从PyTorch的原理到应用,从深度学习到强化学习,本书提供了全栈解决方案。 第1版上市后销量和口碑俱佳,是深度学习领域的畅销书,被誉为PyTorch领域的标准著作。第2版在第1版的基础上,去芜存菁,与时具进,根据PyTorch新版本全面升级,技术性、实战性、针对性、丰富性、易读性均得到了进一步提升,必定能帮助读者更轻松、更高效地进入深度学习的世界。 全书一共19章,在结构上分为三大部分: 第1部分(第1~4章) PyTorch基础 首先有针对性地讲解了Python和PyTorch的基石NumPy中的关键知识,然后详细讲解了PyTorch的基础知识、神经网络工具箱和数据处理工具箱等内容,帮助读者快速了解和掌握PyTorch。 第二部分(第5~10章) 深度学习基础 依次讲解了机器学习、视觉处理、自然语言处理、注意力机制、目标检测、
本书基于PyTorch框架,用通俗易懂的语言深入浅出地介绍了强化学习的基本原理,包括传统的强化学习基本方法和目前流行的深度强化学习方法。在对强化学习任务建模的基础上,首先介绍动态规划法、蒙特卡洛法、时序差分法等表格式强化学习方法,然后介绍在PyTorch框架下,DQN、DDPG、A3C等基于深度神经网络的大规模强化学习方法。全书以一个扫地机器人任务贯穿始终,并给出具有代表性的实例,增加对每个算法的理解。全书配有PPT和视频讲解,对相关算法和实例配有代码程序。 全书共分三部分: 和第二部分(第1~8章)为表格式强化学习部分,着重介绍深度强化学习概述、环境的配置、数学建模、动态规划法、蒙特卡洛法、时序差分法、n 步时序差分法、规划和蒙特卡洛树搜索; 第三部分(第9~14章)为深度强化学习部分,着重介绍深度学习、PyTorch与神经网
本书是揭示大语言模型背后技术奥秘的 金钥匙 ,从宏观到微观全方位解读AI创新世界,帮助读者释放创造力、解放生产力、提升技术力。 本书的第1章和第2章聚焦大语言模型本身以及提示工程的兴起,能够让读者对大语言模型技术的发展背景、概念以及应用场景等有较为全面的了解。第3章,则是结合当下火热的AIGC话题展开介绍,为读者提供AIGC图像生成的实战体验,帮助读者快速上手,更好地感受和理解当前AIGC和提示工程的强大威力。第4章和第5章,从实操角度为读者提供丰富的提示工程基本技巧和进阶技巧,并探索大语言模型的高阶玩法,如编程、插件、函数调用等,帮助读者解锁大语言模型深层次的应用潜力。第6章、第7章和第8章,针对提示工程在搜索、Microsoft 365,以及法律、金融、医疗等多个领域及行业的具体应用展开介绍。 本书的每一章都
随着近几十年来技术的飞速发展,人机交互技术的地位越来越重要。本书目的是建立以信息流(包括输入、处理、输出过程)交互为基础的人机交互设计与评价思想体系,主要内容包括:人的感觉特性,人的情境认知特性,人的控制特性,人的行为信息分析,以及设计及评价方法、专题研究。
《从掷骰子到人工智能:趣谈概率》一书极具启发性,学习概率统计的入门书,书中介绍的著名趣味概率问题包括赌博点数分配问题、赌徒谬误、高尔顿钉板、几何概型悖论、酒鬼漫步、德国坦克问题、博士相亲、中国餐馆过程等。通过讨论这些简单有趣的例子,让读者了解概率统计中的重要概念,诸如随机变量、期望值、贝叶斯定理、大数定律、中心极限定理、马尔可夫过程、深度学习等等。概念的引入思路清晰,重要知识有拓展,许多重要概念和理论都有直观的解释和应用场景。让年轻人从游戏和趣题中学到知识,吸引他们踏进基础科学、人工智能、信息技术的大门。
本书通过基础理论和算法实战相结合,循序渐进地介绍了深度学习与交通大数据领域内的计算机基础知识案例和应用实战案例,并通过PyTorch框架实现所有深度学习算法及案例应用。全书共8章,分别介绍了Python基础知识、PyTorch基础知识、深度学习基础模型,以及基于深度学习的轨道交通刷卡数据、共享单车轨迹数据、出租车轨迹数据、私家车轨迹数据、空中交通运行数据五个案例实战。 本书主要面向广大从事交通大数据分析、机器学习或深度学习的专业人员,从事高等教育的专任教师,高等学校的在读学生及相关领域的广大科研人员。
本书从深度学习基础理论和MATLAB机器学习工具箱开始,由浅入深地介绍主流深度学习技术在多个特定工程领域的技术实践。在广泛的场景中为读者提供有价值的理论建模、数据生成以及网络结构设计的方法与技术,这些知识将带领读者探寻深度学习技术的本质,并教会读者适当地使用这类技术解决自己的研究问题。 本书结合作者多年从事MATLAB商用工具箱设计的丰富经验,专门针对从事实际工作的工程师撰写,覆盖深度学习的技术细节,告诉我们深度学习集技术、科学和艺术于一体,涉及统计、矩阵、算法、优化、编程、分布式计算和安全等多个领域。本书出版后,好评如潮,获得相关领域内众多学者和工程师的关注。