本书全面且深入地呈现了深度学习领域的知识体系,系统梳理了该领域的核心知识,阐述了深度学习的关键概念、基础理论及核心思想,剖析了当代深度学习架构与技术。全书共 20 章。本书首先介绍深度学习的发展历程、基本概念及其在诸多领域(如医疗诊断、图像合成等)产生的深远影响;继而深入探讨支撑深度学习的数学原理,包括概率、标准分布等;在网络模型方面,从单层网络逐步深入到多层网络、深度神经网络,详细讲解其结构、功能、优化方法及其在分类、回归等任务中的应用,同时涵盖卷积网络、Transformer 等前沿架构及其在计算机视觉、自然语言处理等领域的独特作用。本书还对正则化、采样、潜变量、生成对抗网络、自编码器、扩散模型等关键技术展开深入分析,阐释其原理、算法流程及实际应用场景。对于机器学习领域的新手,本书是全面且
本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。 全书分为三部分,依次介绍语言模型的原理、应用及优化。第一部分 理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。第二部分 使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第三部分 训练和微调语言模型(第10~12章),探讨大模型的训练与微调方法,包括嵌入模型的构建、分类任务的优化及生成式模型的微调,以适应特定需求。 本书适合对大模型感兴趣的开发者、研究人员和行业从业者。读者无须深度学习基础,只要会用Python,就可以通过本书深入理解大模型的原理并上手大模型应用开发。书中示例还可以一
DeepSeek三本套装,让你从新手到高手! 《高效使用DeepSeek》DeepSeek保姆级教程!它能指导我们每个人零基础轻松掌握DeepSeek的高效使用方法,成为使用DeepSeek的高手,走在时代的前列。作者卢森煌有多年的创业经验,是AI应用领域的资深专家,是多家500强企业的AI实施顾问,为数百家企业提供了AI应用方面的培训和咨询,本书内容是基于这些经验的总结。本书得到了北青传媒总裁、阿里云副总裁、快手副总裁等多位专家高度评价。 《DeepSeek使用指南》进阶顾问级教程!本书聚焦于DeepSeek的使用方法和技巧,直击30多个高频工作场景,通过100余个开箱即用的提示词模板,助你实现职场的弯道超车。从3分钟速出会议纪要、1键生成爆款思维导图,到悬疑剧本创作、短视频分镜设计,再到法律文书润色、学术数据可视化。无论是PPT排版 效率革命 、海报文案 灵感爆发 ,还是商
本书全面阐述了现代因果关系分析,展示了因果关系如何从一个模糊的概念发展成为一套数学理论,并广泛用于统计学、人工智能、经济学、哲学、认知科学、卫生科学和社会学等领域。本书提出了一个全面的因果关系理论,它统一了因果关系的概率、操作、反事实和结构方法,并提供了简单的数学工具来研究因果关系和统计关联之间的关系。本书通过融合领域知识、常识约束、文化传承的概念等来补充数据信息,为基于统计的机器学习中遇到的基本问题提供了科学的解决方案。
本书主要围绕AI系统的理论基础与技术基础知识展开,结合实例进行介绍,旨在让读者了解AI系统的来龙去脉,形成对AI系统的系统化与层次化的初步理解,掌握AI系统基本理论、技术、实际应用及研究方向,为后续从事具体的学习研究工作和项目开发工作奠定基础。 本书首先介绍AI的历史、现状与发展及AI系统的基本知识,后分为AI硬件与体系结构、AI编译与计算架构、AI推理系统与引擎、AI框架核心模块四篇进行详细介绍,涉及AI系统从底层原理到应用落地的全貌,反映了AI系统架构的前沿技术。
《强化学习(第2版)》作为强化学习思想的深度解剖之作,被业内公认为是一本强化学习基础理论的经典著作。它从强化学习的基本思想出发,深入浅出又严谨细致地介绍了马尔可夫决策过程、蒙特卡洛方法、时序差分方法、同轨离轨策略等强化学习的基本概念和方法,并以大量的实例帮助读者理解强化学习的问题建模过程以及核心的算法细节。《强化学习(第2版)》适合所有对强化学习感兴趣的读者阅读、收藏。
在人工智能蓬勃发展的当下,大模型技术正引领着新一轮的技术变革。《人工智能大模型:动手训练大模型基础》以Python语言为主要工具,采用理论与实践相结合的方式,全面、深入地阐述了人工智能大模型的构建与应用,旨在帮助读者系统理解大模型的技术原理,掌握其核心训练方法,从而在人工智能领域建立系统的技术认知体系。 全书分为五个部分:第一部分从大模型的技术演进历程讲起,重点剖析Python语言在大模型开发中的核心作用;第二部分围绕模型架构设计、训练优化算法及分布式训练策略展开;第三部分深度解读Transformer等主流架构及其变体的实现原理;第四部分涵盖超参数调优、正则化技术、模型评估指标与优化策略;第五部分提供了大模型在自然语言处理、计算机视觉、语音识别等领域的高级应用案例。 《人工智能大模型:动手训练大模型基础
本书基于真实数据集,全面系统地阐述现代计算机视觉实用技术、方法和实践,涵盖50多个计算机视觉问题。全书分为四部分:di一部分(第1~3章)介绍神经网络和PyTorch的基础知识,以及如何使用PyTorch构建并训练神经网络,包括输入数据缩放、批归一化、超参数调整等;第二部分(第4~10章)介绍如何使用卷积神经网络、迁移学习等技术解决更复杂的视觉相关问题,包括图像分类、目标检测和图像分割等;第三部分(第11~13章)介绍各种图像处理技术,包括自编码器模型和各种类型的GAN模型;第四部分(第14~18章)探讨将计算机视觉技术与NLP、强化学习和OpenCV等技术相结合来解决传统问题的新方法。本书内容丰富新颖,语言文字表述清晰,应用实例讲解详细,图例直观形象,适合PyTorch初中级读者及计算机视觉相关技术人员阅读。
本书全程图解式讲解,通过大量全彩插图拆解概念,让读者真正告别学习大模型的枯燥和复杂。 全书分为三部分,依次介绍语言模型的原理、应用及优化。*部分 理解语言模型(第1~3章),解析语言模型的核心概念,包括词元、嵌入向量及Transformer架构,帮助读者建立基础认知。*部分 使用预训练语言模型(第4~9章),介绍如何使用大模型进行文本分类、聚类、语义搜索、文本生成及多模态扩展,提升模型的应用能力。第三部分 训练和微调语言模型(第10~12章),探讨大模型的训练与微调方法,包括嵌入模型的构建、分类任务的优化及生成式模型的微调,以适应特定需求。 本书适合对大模型感兴趣的*、研究人员和行业从业者。读者无须深度学习基础,只要会用Python,*可以通过本书深入理解大模型的原理并上手大模型应用开发。书中示例还可以一键在线运行,
本书涵盖了Transformer在NLP领域的主要应用。首先介绍Transformer模型和Hugging Face 生态系统。然后重点介绍情感分析任务以及Trainer API、Transformer的架构,并讲述了在多语言中识别文本内实体的任务,以及Transformer模型生成文本的能力,还介绍了解码策略和度量指标。接着深入挖掘了文本摘要这个复杂的序列到序列的任务,并介绍了用于此任务的度量指标。之后聚焦于构建基于评论的问答系统,介绍如何基于Haystack进行信息检索,探讨在缺乏大量标注数据的情况下提高模型性能的方法。最后展示如何从头开始构建和训练用于自动填充Python源代码的模型,并总结Transformer面临的挑战以及将这个模型应用于其他领域的一些新研究。
全书分为4部分。第1部分对基础知识展开讲解,包括Linux基础和ROS入门。第2部分主要关注一个实际的机器人中的硬件和核心传感器模块的构造,重点讲解机器人上的传感器、差分底盘、树莓派主板开发方面的知识。第3部分是SLAM地图构建的核心算法,SLAM中的数学基础、基于激光的SLAM系统、基于视觉的SLAM系统、混合SLAM系统、新型SLAM系统。第4部分是自主导航相关的核心技术与应用,包括自主导航中的数学基础、基于地图的导航、基于环境探索建图的导航、强化学习在机器人导航中的应用。 通过阅读本书,读者不仅可以自己设计出一套SLAM导航机器人出来,还可以在软硬件结合的环境中提高自己的C++/Python/Java方面的编程能力,同时还可以接触到流行的SLAM算法的实际应用。
一个高中生可以创建深度的Q-learning代码来控制她的机器人,却不了解 "深度 "或 "Q "的含义,也不知道为什么代码有时会失败。本书旨在以具有微积分和矩阵代数背景的学生可以理解的方式,解释强化学习和优化控制背后的科学。本书的一个独特重点是算法设计,以获得学习算法的快收敛速度,以及对强化学习有时失败的原因的洞察。一开始就避开了高级随机过程理论,用更直观的确定性探测来代替学习的随机探索。一旦理解了这些思想,掌握植根于随机控制的技术就不难了。这些主题在本书的第二部分有所涉及,从马尔科夫链理论开始,以对强化学习的行为者批评方法的全新审视结束。
注意 作为一切思维活动的起点,一直是哲学、心理学和认知神经科学的重点研究对象。随着计算机技术的发展,人类对注意力机制的模拟和应用成为计算机科学领域的热点研究方向 让计算机能够具有类似人类的注意力机制,使其能够有效地应用于对数据的理解和分析。Transformer模型诞生后,注意力机制在人工智能各大重要领域的研究和应用更是如火如荼,成果丰硕。 《人工智能注意力机制:体系、模型与算法剖析》从注意力机制这一重要角度入手,阐述注意力机制的产生背景和发展历程,通过详实的理论剖析,以深入浅出的方式着重介绍注意力机制在计算机视觉、自然语言处理,以及多模态机器学习三大人工智能方向中的应用思路、模型与算法。 《人工智能注意力机制:体系、模型与算法剖析》以人工智能相关专业研究人员,特别是计算机视觉与自然语言处理
本书从基础知识开始,介绍深度学习与图神经网络相关的一系列技术与实现方法,主要内容包括PyTorch的使用、神经网络的原理、神经网络的基础模型、图神经网络的基础模型。书中侧重讲述与深度学习基础相关的网络模型和算法思想,以及图神经网络的原理,且针对这些知识点给出在PyTorch框架上的实现代码。 本书适合想学习图神经网络的技术人员、人工智能从业人员阅读,也适合作为大专院校相关专业的师生用书和培训班的教材。
本书涵盖了从梯度下降的基础知识一直到使用HuggingFace库微调大型自然语言处理模型(BERT和GPT-2)。它分为四个部分 第一部分:基础知识(梯度下降,在PyTorch中训练线性和逻辑回归);第二部分:计算机视觉(更深层次的模型和激活函数、卷积、迁移学习、初始化方案);第三部分:序列(RNN、GRU、LSTM、序列到序列模型、注意力、自注意力、转换器);第四部分:自然语言处理(词元化、嵌入、上下文词嵌入、ELMo、BERT、GPT-2)。 该书以三卷的形式呈现给大家,第一部分为第一卷,第二部分为第二卷,第三部分和第四部分为第三卷。 在第三卷中,您将了解与序列相关的所有内容:循环神经网络及其变体、序列到序列模型、注意力、自注意力和转换器。本卷还包括有关自然语言处理的速成教程,从单词词元化的基础知识一直到使用HuggingFace库微调大型模型(BERT和GPT
本书聚焦通用人工智能的学科内涵与发展趋势,以一套基于 能力与价值双系统 的通用人工智能认知架构与测试模式为核心,梳理形成 一个定义、两个完备性、三个特征、八个关键问题 的理论框架。 本书共6章,从人工智能的历史、内涵与哲学基础切入,依次介绍通用人工智能的定义与特征、测试与评级、训练与测试平台,以及TongAI理论框架,最后给出对发展通用人工智能的建议。本书既有助于科技领域的管理者和投资者提纲挈领,把握前瞻性科技目标,也可为专业研究人员提供通用人工智能标准、评级、测试、架构的参照系与发展指南。同时,本书还可供希望了解通用人工智能基本概念与关键问题的大众读者参考。
《人工智能在电气工程中的应用》主要包括人工智能的定义与发展历史以及深度学习和强化学习在电气工程智能化中的应用,从电气工程智能化的技术发展现状和基本概念入手,逐步介绍人工智能在电气工程领域涉及的前沿算法和相关技术及体系。随后分别以具体的应用实例介绍人工智能相关技术在电气工程领域的应用研究现状,主要包括基于人工智能的故障诊断技术、基于人工智能的混合能源系统与电动汽车系统能量管理技术、基于人工智能的控制和优化技术以及基于人工智能的电力电子调制技术。
本书通过深度学习实例,从可解释性角度出发,阐述深度学习的原理,并将图神经网络与深度学习结合,介绍图神经网络的实现技术。本书分为6章,主要内容包括:图片分类模型、机器视觉的高级应用、自然语言处理的相关应用、神经网络的可解释性、识别未知分类的方法 零次学习、异构图神经网络。本书中的实例是在PyTorch框架上完成的,具有较高的实用价值。 本书适合人工智能从业者、程序员进阶学习,也适合作为大专院校相关专业师生的教学和学习用书,以及培训学校的教材。
穿戴式设备集人类与科技各种交互方式之大成,覆盖了广泛的研究和技术领域,甚至涉及一些看起来不相关的跨领域的知识。 有多少电子工程师会学习纺织知识?有多少行为学家了解传感器?这样的例子不胜枚举。基于此,本书从不同的领域出发,意在对穿戴式技术的各方面做一个全面的勾勒。 本书分成7大部分,涵盖了穿戴式技术的多个重点领域,虽不可能做到包含全部内容,但可以帮助读者尽可能学习掌握穿戴式设备。书中所有章节均由世界上相关领域的知名优秀专家撰写,分享了他们对该领域的独特见解。
生物计算是一种以DNA、RNA和蛋白质等生物大分子为数据的计算。本书较为深入地探讨DNA计算的各个方面,从基础理论到实验操作,再到解的检测,都囊括其中。同时,书中对RNA计算和蛋白质计算也进行了概述。全书共12章。其中,第1章~第4章详细介绍图与计算复杂性、生物计算数据、生物计算算子(酶与生化操作),以及在DNA计算中发挥关键作用的技术和方法。第5章重点阐述DNA编码理论与算法。第6章~第8章深入探讨枚举型、非枚举型、并行型等多种DNA计算模型的构建思路和优缺点。第9章与第10章介绍一些DNA计算在密码学、生物信息学、优化问题等领域的应用案例。第11章与第12章介绍RNA计算与蛋白质计算的相关理论与应用。这样的结构安排旨在为读者提供一个全面、系统的生物计算知识框架。 本书适合图论与算法、分子生物学、计算机科学、生物信息学及人工
本书主要介绍用于支持企业决策的分析、数据科学和人工智能技术。除了传统的决策支持应用外,本书还介绍了人工智能、机器学习、机器人技术、聊天机器人、物联网和互联网技术。 全书分为五部分,部分(第1~3章)概述分析与人工智能,第二部分(第4~7章)介绍预测性分析和机器学习,第三部分(第8和9章)深入研究规范性分析和大数据,第四部分(第10~13章)介绍机器人、社交网络、人工智能和物联网,第五部分(第14章)讨论分析与人工智能对安全、隐私和社会等方面的影响。 本书的读者对象包括数据分析、商务智能相关专业的学生和研究人员,以及商业分析、决策支持系统相关从业人员。
本书以图像的物理形成过程和相机获取数字图像的原理为支撑,介绍计算摄像学中的基本问题、模型、理论及其用传统zui优化、信号处理方法的解决方案。结合各问题近些年随着深度学习技术的发展带来的全新进展,介绍深度学习和计算摄像问题的结合与应用。深度学习作为目前视觉计算领域zui热门的技术之一,在高层计算机视觉的目标检测、识别、分类等问题上带来了传统方法无法企及的性能突破。深度学习技术在计算摄像学中也正在发挥广泛而积极的作用。通过适当的方法,将传统计算摄像学在光学特性、物理过程和成像模型等方面的先验、约束与数据驱动方法强大的学习、建模能力进行优势互补,可以为众多计算摄像难题的求解提供全新的思路和手段。
本书从机器学习视角,系统梳理线性代数与最优化理论,直击初学者 知识零散、课程脱节 的痛点。全书以 应用导向 贯穿始终,分两大模块构建知识网络: 1.线性代数及其应用:从矩阵运算本质出发,深入剖析奇异值分解(SVD)、核方法、图谱理论等工具,通过人脸识别、推荐系统等案例,展现线性代数在特征提取、降维、异常检测中的核心作用。 2.最优化理论及其应用:以最小二乘回归为支点,辐射梯度下降、牛顿法、约束优化等算法,揭示支持向量机、Logistic回归的数学原理,并延伸至神经网络训练中的计算图优化技术。 作者独创 概念即时应用 模式,每章配以 理解题 与 综合习题 ,确保读者在真实问题中内化知识,实现从数学公式到算法代码的无缝衔接。
本书以实用、易于理解的方式介绍了新兴的、迅速发展的边缘人工智能领域。本书涵盖广泛的主题,从核心概念到最新的硬件和软件工具,内容充满了可操作的建议,并包含多个端到端示例。本书可分为两部分:第一部分介绍和讨论关键概念,帮助你了解整个领域的情况,并带你了解有助于设计和实现应用程序的实际过程;第二部分通过三个完整的用例来演示如何运用所学知识解决科学、工业和消费者项目中的实际问题。本书旨在为那些将推动这场革命的工程师、科学家、产品经理和决策者提供指导。它是针对整个领域的高层次指南,提供了一个工作流程和框架,用于利用边缘人工智能解决现实世界的问题。