本书是《工程控制论》(第三版)的下册。这一册共九章。第十三章讨论摄动理论在控制系统设计中的应用,其中特别说明在飞行控制系统中的应用。第十四、十五两章介绍控制系统在随机干扰下的分析和设计。第十六、十八章讨论了适应性控制系统的设计。第十九章介绍了提高控制系统可靠性的各种方法。第十七、二十、二十一这三章分别是:逻辑控制和有限自动机(第十七章),信号与信息(第二十章),大系统(第二十一章)。这些方面已构成工程控制论这门学科的重要研究方向。书末还附有“有关中文著作目录选辑”,可供读者查阅。
本书分为两大部分:di一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Scikit-Learn进行机器学习的端到端训练示例。作者尤其对深度神经网络进行了深入的探讨,包括各种神经网络架构、强化学习,以及如何使用TensorFlow/Keras库来构建和训练神经网络。本书兼顾理论与实战,既适合在校学生,又适合有经验的工程师。
9787115600820 动手学深度学习(PyTorch版) 109.80 9787115584519 动手学强化学习 89.90 9787115618207 动手学机器学习 89.80 《动手学深度学习(PyTorch版)》 本书是《动手学深度学习》的重磅升级版本,选用经典的PyTorch深度学习框架,旨在向读者交付更为便捷的有关深度学习的交互式学习体验。 本书重新修订《动手学深度学习》的所有内容,并针对技术的发展,新增注意力机制、预训练等内容。本书包含15章,第一部分介绍深度学习的基础知识和预备知识,并由线性模型引出最简单的神经网络 多层感知机;第二部分阐述深度学习计算的关键组件、卷积神经网络、循环神经网络、注意力机制等大多数现代深度学习应用背后的基本工具;第三部分讨论深度学习中常用的优化算法和影响深度学习计算性能的重要因素,并分别列举深度学习在计算机视觉和自然语言处理中的重要应用
本书是微软推出的 AI for Beginners 系列课程的中文版,专门为希望进入 AI 领域的初学者设计。本书提供为期 12 周、共24 堂课的系统学习路径,每堂课配有 Jupyter Notebook 实践笔记本,附带测验与练习,中文版还在 Gitee 上托管了课程相关的 Notebook,便于读者在实践中掌握人工智能的核心概念和应用。 书中涵盖如下内容:AI 历史与发展,探索人工智能从符号到深度学习的演变;神经网络与深度学习,使用 TensorFlow 和 PyTorch 框架讲解神经网络的基本原理及应用;计算机视觉与自然语言处理,学习图像识别和文本分析技术;其他 AI 技术,如遗传算法和多智能体系统等。 本书适合 AI 爱好者、初学者,以及相关专业的学生、老师阅读,不需要复杂数学背景即可轻松入门,通过实战项目提升操作能力。
人工智能 (AI) 时代已悄然而至,然而对 AI 伦理学的研究却刚刚起步。与以往的技术革命不同,AI 有望在多个领域取代人类,但也有伤害人类的潜在风险。为防止对AI技术的滥用,我们在复杂性变得不可控之前,必须把糟糕的情况都预想到、分析到。 《人工智能伦理》从人工智能的关键内容(包括图灵测试、数据、知识、机器学习、自我意识等)出发,尽可能地用朴素的语言讲清楚复杂的概念,揭示出各种AI伦理问题以唤起读者的思考。本书基于大量真实数据,阐述了和平、合理发展 AI 技术的伦理思想,对 AI 技术可能引发的某些社会问题(如技术失业、两性平等)也做了剖析。
传统材料研发模式主要基于实验“试错法”,其研发周期长、效率低,人工智能驱动的科研范式变革和新材料数字化研发模式能有效地降低研发成本,缩短研发周期。本书基于计算、数据、AI和实验“四位一体”的新材料集成式智能化研发理念,提出了基于材料基因编码的新材料智能设计范式,从企业级新材料研发和面向科研的材料计算视角,重点围绕高通量材料集成计算、多尺度材料计算模拟、材料数据库、材料数据机器学习、新材料研发制造软件等介绍了新材料数字化智能化研发和设计基本概念、方法、技术和应用。本书同时也介绍了国产的高通量多尺度集成式材料智能化设计工业软件MatCloud+,并通过一些精选案例介绍了材料计算、数据和新一代人工智能等数字化研发方法技术在新能源、金属/合金、石油化工、复合材料、新型功能材料等重点材料行业或领域的
数据驱动的研究正在革新复杂系统的建模、预测和控制。本书面向高年级本科生和研究生,提供了一个综合的视角,展示了如何将新兴的方法,如数据科学、数据挖掘和机器学习技术,应用到工程和物理科学中。
深度学习绝非不可窥探的黑箱!深入理解其模型和算法的实际运作机制,是驾驭并优化结果的关键。你无需成为数学专家或资深数据科学家,同样能够掌握深度学习系统内部的工作原理。本书旨在通过深入浅出的方式,为你揭示这些原理,让你在理解和解释自己的工作时更加自信与从容。 《深度学习精粹与PyTorch实践》以浅显易懂的方式揭示了深度学习算法的内部运作机制,即使是机器学习初学者也能轻松理解。本书通过平实的语言解析、详尽的代码注释,以及数十个基于PyTorch框架的实战示例,逐步引导你探索深度学习的核心概念与实用工具。本书避免了复杂的数学公式堆砌,而是采用直观易懂的方式阐述每种神经网络类型的运作逻辑。更令人兴奋的是,书中提供的所有解决方案均可在现有的GPU硬件上顺畅运行! 主要内容 ● 选择正确的深度学习组件 ● 训练和评估
本书弥补了纯数学书籍和机器学习书籍存在的单一性问题,介绍了理解机器学习所需的数学概念,例如线性代数、解析几何、矩阵分解、向量微积分、优化、概率和统计,并使用这些概念推导出了四种核心机器学习方法:线性回归、主成分分析、高斯混合模型和支持向量机。本书每一章都包括一些例子,大部分章还配有习题,以方便读者测试对所学知识的理解程度。本书适合数据科学专业和计算机科学专业的学生,以及算法工程师与机器学习领域相关从业者阅读。
本书通过高度创新的方法——利用现有无线设备和信号处理技术将多径视为虚拟天线,并结合时间反演原理和机器学习相关知识构建了无线AI的统一框架,涵盖了基础的理论、丰富的实验结果,以及针对产品和应用开发的真实案例。涉及的主题包括室内定位与追踪、无线感知与分析、无线功率传输与能源效率、5G和下一代通信系统,以及大量带宽不同、功能各异的异构物联网设备的连接。本书可供无线感知、定位、物联网、机器学习、信号处理和无线通信等领域的毕业生、研究者和专业人员参考阅读。
本书围绕自主无人系统发展背景、发展现状、技术挑战、伦理道德和政策法律等问题展开阐述。首先介绍了自主无人系统的相关概念、发展历程、发展现状和发展趋势;其次重点分析了自主无人系统涉及的关键技术,包括感知与认知、决策与规划、行动与控制、交互与协同、学习与进化等;然后分析了使用自主无人武器系统面临的伦理道德与政策法律问题,并介绍了主要国家的法律和相关政策;最后对自主无人系统的发展前景进行了展望,指出自主无人系统发展的最终目标是人机协同、人机共融和人机共生。
机器学习系统既复杂又独特。复杂是因为它们由许多不同的组件组成,并涉及许多不同的领域。之所以说独特,是因为它们依赖于数据,不同用例之间的数据差异很大。在本书中,您将学习一种整体的方法来设计可靠、可伸缩、可维护的ML系统,并能适应不断变化的环境和业务需求。 作者Chip Huyen是Claypot AI的联合创始人,她考虑了每个设计决策 比如如何处理和创建训练数据,使用哪些功能,多久再训练一次模型,以及监控什么 在它如何帮助整个系统实现其目标的背景下。本书中的迭代框架使用了大量参考文献支持的实际案例研究。
人工智能驱动的组学挖掘是数据驱动的生物医学研究的支撑技术。组学测序技术逐步向多尺度、跨模态、有扰动等方向发展,但体现出的高维度、高噪声、多模态、标记稀缺等特点,成为制约其有效挖掘的瓶颈。本书面向生命组学数据特点,较为系统和深入地对组学机器学习的主要研究范式、适用场景、分析方法、理论思想进行介绍。结合相应组学挖掘的具体研究案例,向读者展示组学人工智能驱动的生命健康交叉研究的绚烂图景。
本书对所有重要的机器学习方法和新近研究趋势进行了深入探索,新版重写了关于神经网络和深度学习的章节,并扩展了关于贝叶斯学习的内容。书中首先讨论基础知识,包括均方、 小二乘和 似然方法,以及岭回归、贝叶斯决策理论分类、逻辑回归和决策树。然后介绍较新的技术,包括稀疏建模方法、再生核希尔伯特空间和支持向量机中的学习、关注EM算法的贝叶斯推理及其变分近似推理、蒙特卡罗方法、关注贝叶斯网络的概率图模型、隐马尔可夫模型和粒子滤波。此外,书中还讨论了降维、隐变量建模、统计参数估计、维纳和卡尔曼滤波、凸优化等技术。本书适合该领域的科研人员和工程师阅读,也适合学习模式识别、统计/自适应信号处理和深度学习等课程的学生参考。
通过一系列的技术突破,深度学习推动了整个机器学习领域的发展。现在,即使是对这项技术几乎一无所知的程序员也可以使用简单、高效的工具来实现具备数据学习能力的程序。这本畅销书采用具体示例、小化理论和生产就绪的Python框架(Scikit-Learn、Keras和TensorFlow)来帮助你直观地理解构建智能系统的概念和工具。 在更新的第3版中,作者Aur lien G ron探究了一系列技术,从简单的线性回归开始,逐步推进到深度神经网络。书中的大量代码示例和练习有助于你学以致用。你需要具备一定的编程经验。
人工智能方兴未艾,机器学习算法作为实现人工智能最重要的技术之一,引起了无数相关从业者的兴趣。本书详细介绍了机器学习算法的理论基础和高级实践案例,理论部分介绍了机器学习项目体系搭建路径,包括业务场景拆解、特征工程、模型评估和选型、模型优化;实践部分介绍了业界常见的业务场景,包括计算广告、供需预测、智能营销、动态定价。随书附赠所有案例源码,获取方式见封底。 本书内容深入浅出,理论与实践相结合,帮助计算机专业应届毕业生、跨专业从业者、算法工程师等读者能够从零构建机器学习项目实现流程,快速掌握关键技术,迅速从小白成长为独当一面的算法工程师。
本书的目的是考虑大型且具有挑战性的多阶段决策问题,这些问题原则上可以通过动态规划和*控制来解决,但它们的精确解决方案在计算上是难以处理的。本书讨论依赖于近似的解决方法,以产生具有足够性能的次优策略。这些方法统称为增强学习,也可以叫做近似动态规划和神经动态规划等。 本书的主题产生于*控制和人工智能思想的相互作用。本书的目的之一是探索这两个领域之间的共同边界,并架设一座具有任一领域背景的专业人士都可以访问的桥梁。
本书详实介绍了数据挖掘与机器学习相关的各种内容,包括数据矩阵、图数据、核方法、项集挖掘、聚类、贝叶斯分类器、决策树、支持向量机、线性回归、逻辑回归、神经网络、深度学习等,介绍其相关概念和基础算法,并在每章的末尾配有相关练习。第二版新增了几个关于回归的章节,包括神经网络和深度学习的内容。
书中按照游戏项目开发的流程编排内容,用一个综合实例贯穿全书,详细介绍了蓝图的应用、游戏基础逻辑的编写、UI的制作、AI的开发、动画的制作、C 开发等知识。
本书从机器学习的角度系统地讨论自然语言处理,提供了对NLP解决方案更深入的数学理解。学生可以利用这些知识来解决NLP任务,并建立更好的NLP模型。
《PyTorch计算机视觉实战:目标检测、图像处理与深度学习》 深度学习是近年来计算机视觉应用在多个方面取得进步的驱动力。本书以实践为驱动,结合具体应用场景,基于真实数据集全面系统地介绍如何使用PyTorch解决50多个计算机视觉问题。 首先,你将学习使用NumPy和PyTorch从头开始构建神经网络(NN),并了解调整神经网络超参数的最佳实践。然后,你将学习如何使用卷积神经网络(CNN)和迁移学习完成图像分类任务,并理解其中的工作原理。随后,你将学习二维和三维多目标检测、图像分割、人体姿态估计等多个实际任务,并使用R-CNN、Fast R-CNN、Faster R-CNN、SSD、YOLO、U-Net、Mask R-CNN、Detectron2等框架实现这些任务。在自编码器和GAN部分,本书将指导你学习面部表情替换、面部图像生成和面部表情处理技术。之后,你将学习如何将计算机视觉与NLP技术(如LSTM、transfor
ChatGPT和DALL-E这样的大语言模型(LLM)和扩散模型拥有前所未有的潜力。通过使用互联网上的公共文本和图像进行训练,这些模型能够为各种任务提供帮助。而且,随着准入门槛的显著降低,几乎任何开发人员都可以利用AI模型来解决以前不适合自动化的问题。 借助本书,你将在生成式人工智能方面打下坚实的基础,学会如何在实践中应用这些模型。在将大语言模型和扩散模型集成到工作流中时,大多数开发人员很难获得可用于自动化系统的可靠结果。作者James Phoenix和Mike Taylor展示了如何通过提示工程原则在生产过程中有效使用AI。
本书主要针对智能喷涂机器人关键技术及应用,详细介绍了喷涂机器人动力学建模、运动精度与可靠性分析、主从示教、助力拖动示教、基于数字孪生的离线编程系统、轨迹规划及路径规划、多机协同喷涂及动态监控技术等内容,并阐述了智能喷涂机器人在家具、钢结构及迷彩喷涂等方面的典型应用,总结了柔性化喷涂生产线和智能喷涂共享中心的研究进展。