《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年首个印刷本出版,至今已有1000多种不同版本。 欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。
本书这本经久不衰的畅销书出自一位著名数学家G 波利亚的手笔,虽然它讨论的是数学中发现和发明的方法和规律,但是对在其他任何领域中怎样进行正确思维都有明显的指导作用。本书围绕 探索法 这一主题,采用明晰动人的散文笔法,阐述了求得一个证明或解出一个未知数的数学方法怎样可以有助于解决任何 推理 性问题 从建造一座桥到猜出一个字谜。一代又一代的读者尝到了本书的甜头,他们在本书的指导下,学会了怎样摒弃不相干的东西,直捣问题的心脏。
《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的故事。书中既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙 辛格讲述了怀尔斯经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
本书主要介绍了物理学领域的相关知识、主要物理学概念、物理学家、物理学理论及发现等。本书内容丰富,涵盖广泛,作者通过物理学发展的时间轴以简单、易于理解的方式总结了物理学的160个相关主题,包含经典力学、物质、波、热力学、电磁学、原子与辐射、量子力学、粒子物理、相对论和宇宙学等。本书将关键的物理学知识和思想汇集成一本简洁的书,每一页都包含一个离散的 知识 ,它以 小碎片 的形式告诉读者最重要的事实,因此读者可以随意跳转。对于希望快速入门的大众读者或简短的 复习 的相关专业人员会有所帮助。
本书诚实但又不失风趣地记录了作为人类学家的作者在非洲喀麦隆多瓦悠人村落两次进行田野工作的经历,将人类学家如何克服乏味、灾难、生病与敌意的真实田野生活拍案叫绝地呈现在读者面前。不同于一般的人类学研究报告,这是一部令人捧腹不止的人类学笔记,透过幽默的笔调,读者看到了人类学者如何与研究对象进行互动,在互动中如何调整他的学术成见,以及田野工作上的琐事如何影响后来研究结果、研究的盲点与反思。因此不管是严肃的读者、无聊地只想打发时间或者是向往非洲原始部落的异国情调而蠢蠢欲动的旅人,巴利这本书*是一个有趣的选择。
本书由李兰娟主审并作序,国内多名微生态领域的知名专家,总结自己多年的科研、医疗实践经验,倾力撰写而成。全书以通俗易懂、生动的语言,问答的形式,选取读者日常需要了解、期待了解以及还存在认识误区的微生态学、益生菌应用知识进行简明、清晰的介绍。通过阅读,读者对什么是人体的微生态系统,人体有哪些微生态系统,人体各部位微生态失衡会有怎样的表现,应该怎么维护身体各微生态系统的平衡将有初步的、较为清晰的认识。图书内容贴近普通读者的现实生活,回答读者在日常生活中面临的与身体微生态状态及微生态健康相关的问题,将为读者日常生活中面临相关问题提供指南和知识参考。
德国气象学家、地球物理学家魏格纳在《海陆的起源》一书中系统论述了他所提出的大陆漂移说,阐述了漂移论的本质内容以及与地球冷缩说、陆桥说和大洋永存说的关系,从地球物理学、地质学、古生物学等学科方面对漂移论的合理性进行了论证,探讨了大陆漂移的可能性以及动力。本书内容在地质学界和地球物理学界引起了巨大轰动,之后拉开了地球科学革命的序幕。
全书共分三篇。篇介绍了21种平面几何证明方法;第二篇介绍了14种常见问题的求解思路;第三篇介绍了几何图形的基本性质,如三角形中的巧合点问题、三角形中的数量及位置关系问题等。本书在归纳、总结平面几何的概念、定理、公式的基础上,更贴近数学竞赛的命题方向、命题内容。适合于优秀初高中学生尤其是数学竞赛选手、初高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*。省级骨干教师培训班参考用书。
流 是指我们在做某些事情时,那种全 贯注、投入忘我的状态 这种状态下,你甚 感觉不到时间的存在,在这件事情完成之后我们会有 种充满能量并且非常满足的感受。其实很多时候我们在做自己非常喜欢、有挑战并且擅长的事情的时候,就很容易体验到 流,比如爬山、游泳、打球、玩游戏、阅读、演奏乐器还有工作的时候。 理理论之父、积 理学奠基人米哈里 契克森米哈赖在3 前,在大量案例研究基础上,开 性地提出了 流 的概念。本书系统阐述了 流理论,进入 流状态的条件,从日常生活、休闲娱乐、工作、人际关系等各方面,阐述如何进入 流状态。对 理学爱好者和研究者来说,《 流》是理解积 理学等领域不可或缺的理论素材;对大众读者来说,这更是 本提升幸福感和效率的行动指南。
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。除去可以了解各种有趣的数学知识和八卦,你还可以亲自参与到数学当中,亲自制作数学游戏,试着解决数学谜题。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2010年版的译文进行了全面整理提升。斯图尔
本书根据作者多年的教学改革实践修订而成,内容包括*事件与概率、离散型*变量及其分布、连续型*变量及其分布、*变量的数学特征、*变量序列的极限、现代概率论基础简介、数理统计的基本概念、参数估计、假设检验、回归分析与方差分析。书中各章附有相当数量的习题,书末附有习题的参考答案,供读者查阅。本书在*制定的教学大纲的基础上,紧扣硕士研究生入学考试大纲,并以此规范概率统计中的术语与记号。
《笛卡尔几何》的问世,被誉为数学史上的伟大转折。笛卡尔对数学的重要贡献,正是他在《笛卡尔几何》中所创立的解析几何。他的这一成就,为微积分的创立奠定了基础,而微积分,又是现代数学产生和发展的重要基石。 《笛卡尔几何》被后世数学家和数学史家视作解析几何的起点。该书共分三卷:卷讲解尺规作图;第二卷讨论曲线的性质;第三卷借立体和 超立体 作图以探讨方程的根的性质。 笛卡尔力图建立一种 普遍 的数学,即把任一数学问题转化为代数问题,继而把任一代数问题归结为求解一个方程式,这便是 解析几何 ,或称作 坐标几何 。而平面直角坐标的建立,正是解析几何得以创立的关键。
《数学随笔》是作者近年来在微信中发表的一些数学随笔,每次一篇,涵盖了代数、几何、数论、组合、分析等方面的知识。日积月累,集成此书。对热爱解题,希望提高解题技巧的读者极有实用意义。通过研读此书,不仅可以掌握数学解题的方法,还可以提高数学解题的能力。 《数学随笔》适合初、高中师生阅读,亦可供数学爱好者参考。
漫画形式讲解科普的图书,22个发明故事带你还原现场。 瓷器美不美,丝绸靓不靓?衣、食、住、用、行,看古人如何运用智慧精进技术,抓紧一切机会搞生产!建筑、工程、医学、地理、历法,带你回溯历史,见证中国古代傲视世界的科技新高度! 两千年前的开颅手术怎么做?提花机还有记忆存储功能?什么水利工程能千年不倒?从多种科技多元发展,到科技回归沉寂,从实用科技造福农业,到闭关锁国西风东渐,揭秘中国古代科技发展背后不能说的历史故事! 胖乐胖乐亲自下场穿越历史,爆笑对话科技大佬,犀利吐槽发明创造,数、理、化、工、天、地、生、农等领域无所不包,探索古人那些想不通、猜不透的科技发明! 快跟上胖乐胖乐的步伐,一起探索中国古代科技的奥秘!
本书一方面,以《教师教育课程标准》、《教师资格标准》和《数学学科知识与教学能力》(初级中学)考试大纲为依据,以指导和辅助学生有效整合教师教育相关大学学科知识学习为指向,密切结合学习与应试需求,使学习者通过阅读和学习本教材,具有适应初中教学和和国家教师资格考试相关科目的数学学科知识与教学能力;另一方面,以初中数学教师应具有的数学学科知识与教学能力为核心内容,以已有考试真题和命题趋势为导向解读数学学科知识与教学能力中各类知识的学习要点和应试策略。
写给大众的 自然简史 享誉全球的博物学家布封的经典之作,风靡全球的科普知识读本。 《自然史》是一部传世的博物巨著,全书包括《动物史》、《植物史》、《矿物史》、《人类史》、《地球形成史》等,共有36卷。作者在这部著作中,综合大量的事实材料,以科学观察为基础,对自然界进行了精确、详细、科学的描述和阐释,提出了许多有价值的见解。尤其是关于 进化论 的论述,为系统 进化论 的形成和发展奠定了坚实基础。同时,《自然史》也具有相当高的文学价值,作者借助于自己渊博的知识和细腻的文笔,在诙谐幽默的叙述中,赋予了自然万物以灵性。特别是在 动物卷 中,他以热情而浪漫的笔调将动物拟人化,例如温驯又勇敢的马、优雅又神秘的猫、聪明又勤劳的鼹鼠、高傲又威风的狮子、被形容为自然 *丑 造物的树懒等栩栩如生,不
1915年11月,阿尔伯特 爱因斯坦的广义相对论*终定形了,在这以后他撰写了这本《相对论:狭义与广义理论》。这本书是为普通读者写的,在论述狭义和广义相对论的所有著作中一直是表述得*为清晰的读本之一。在爱因斯坦的这本名著的这一版本中,除了包含他的原著的一个权威英文译本这一特色以外,还编入了哈诺克?古特弗洛因德和于尔根?雷恩撰写的14节评述。这些评述剖析了爱因斯坦思想的演变过程,并且把他的理念放到一个现代的背景中进行讨论。本书对有史以来*伟大的科学天才之一提供了无价的洞察,同时还对过去各版本中的引言进行了独一无二的全面研讨,精选收入了一些早期版本的封面、沃尔特?拉特诺写给爱因斯坦的一封讨论此书内容的信,以及从爱因斯坦的原稿中选出的一些发人深省的手稿。 诚如爱因斯坦在前言中所述,这本书是写给不熟悉理
《不等式的秘密(卷第2版)》部分(1 8章)的内容主要介绍了常用的不等式,如AM GM不等式、Cauchy-Schwarz不等式、Holder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。1部分(第9章)是作者收集了近百个不等式的典型问题,内容丰富、解答新颖,富有启发性。 本书适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。
地理学是人类认识自身所处的生活环境,应对粮食生产、交通障碍、资源匮乏、气候变迁等一系列生存难题不可或缺的手段。今天,海平面上升、森林过度砍伐、物种灭绝、快速城市化和大规模移民等挑战日益严峻,地理学的意义愈发凸显。本书简明扼要地介绍了地理学的研究主题、方法、学科意义和价值,梳理了地理学的发展历程,为读者打开了地理学的大门。
人类学家奈吉尔 巴利博士前往陌生的苏拉威西岛,在潮湿闷热、危机四伏的高山密林中艰难穿梭,寻找当地的托拉查人。这个民族的文化独特神秘,因壮观的建筑和神秘的祖先崇拜而闻名。不同于高深莫测、正襟危坐的人类学调查报告,巴利凭借幽默乐观的性格,通过诙谐轻松的文字,将田野工作中遭遇的痛苦与折磨、危险与敌意,与异域文化的种种冲撞,通通化为妙趣横生、令人捧腹的欢乐笔记。
圆作为平面几何的一部分,与其他任何组成部分具有同样的重要性。此外,它还是*一种可以画在球面上的 线 。这使得圆在几何学世界中也许比直线更加无所不在,因为直线在球面几何中是不存在的。本书考察的就是圆在几何学中发挥作用的那些*常见方面。 全书共11章,涉及圆所呈现的种种几何奇观,包括圆的历史、圆的各种关系、圆填充问题、尺规作图问题、切圆探究、摆线等,以及艺术作品和建筑中的圆,还用一整章讲述了球面几何学。