这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。 这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读
9787115630179 数学与生活4:函数是什么 59.80 9787115544568 数学与生活3 无穷与连续 59.80 9787115542083 数学与生活2 要领与方法 59.80 9787115370624 数学与生活(修订版) 69.80 《数学与生活4:函数是什么》 本书为日本数学家远山启的函数科普作品,书中以 理解函数 为线索,以人物对话的形式,从算术开始逐步讲解函数的本质概念及其发展,为读者完整呈现了函数概念,并引导读者理解 从静止走向运动、从离散走向连续、从运算走向关系 的数学思想。 本书可作为理解函数的科普读物,也可作为函数教学的参考资料。 《数学与生活3 无穷与连续》 不懂音符、乐理的人也能欣赏音乐,甚至可以成为音乐鉴赏家。 不懂数学公式的人,是否也能理解现代数学的体系与思考方法,领略其中令人惊叹的超越性美景呢? 本书是从 欣赏 的角度通俗解读现代数学的科普作品。书中用直观、生动
本书牛顿(Newton,1642 1727)用拉丁语写成,于1687年、1718年、1726年出版了三个版本。莫特(Andrew Motte,1696 1734)于1729年翻译出版了本书的英文版,卡加里(Florian Cajori,1859 1930)对莫特的英译本进行了修订,1934年由加利福尼亚大学出版社出版,本次影印的是1946年的第2印次本。
克莱因(Felix Klein,1849 1925)是19世纪末、20世纪初世界数学中心 德国哥廷根学派的领袖,并且热衷于数学教育的改革。本书是具有世界影响的数学教育经典,全书共分3册:册,算术、代数、分析;第二册,几何;第三册,精确数学与近似数学。本次影印前两册的英译本,译者为赫德里克(Earle Raymond Hedrick,1876 1943)和诺布尔(Charles Albert Noble,1867 1962),册用美国Dover图书公司的1945年版,第二册用Dover的1939年版,并将两册合刊。
《沿着鹦鹉螺线滑行-建筑室内设计的数学思考》一书主要涉及了微积分、分形几何和幂律指数在建筑室内设计中的应用和启示。作者从自然界的最小作用量原理出发,探索了数与形之间的联系,以及不同系统之间的相似性。本书分为三个部分,第一部分介绍了微积分的基本概念和原理,以及它们在造型设计中的作用;第二部分介绍了分形几何的特点和美学,以及它们在自然界和艺术中的体现;第三部分介绍了幂律指数的规律和意义,以及它们在不同系统中的普遍性。本书旨在用数理逻辑为建筑室内设计提供理论依据和创新思路,是一本集科学、艺术和哲学于一体的跨学科著作,适合对建筑室内设计、数学和自然感兴趣的读者阅读。
认识数学1 本书是《认识数学》系列数学科普书的卷,由10篇文章组成,作者均是中国科学院数学院系统科学研究院的科研人员。内容包括黎曼猜想 引无数英雄竞折腰,三角往事,凭声音能听出鼓的形状吗,三体问题 天体运行的数学一瞥,图论就在我们身边,孤立子背后的数学,真的吗?如何检验?群体运动中的数学问题,剑桥分析学派,数学的意义。文章选题的主要考虑因素是有趣、深刻和重要,写作力求引人入胜。 认识数学2 本书是《认识数学》系列数学科普书的第二卷,由9篇文章组成,作者均是中国科学院数学与系统科学研究院的科研人员。文章的标题有费马大定理 一个历史的传奇,朗兰兹纲领简介,速降线问题,生活中的电磁和数学,短距离中的一些数学问题,醉汉凌乱的脚步是否能把他带回家?自己能抗干扰的控制方法,莫斯科数学学派,基础数
《俄罗斯初等数学系列:俄罗斯初等数学万题选(代数卷)》共分三卷:代数卷、几何卷、三角卷,共搜进习题近10000道,每卷书的前一部分是习题,后一部分是相应习题的答案、解答或揭示。本卷为代数卷,包括相应习题及解答。本收为初等数学习题集,由王艳丽编著。
独立成分分析(ICA)已经成为神经网络、 统计学和信号处理等研究领域中的重要方向之一。本书是国际上一本ICA的综合性著作,其中包括理解和使用该技术的相应数学基础知识。本书不仅介绍ICA的基本知识与概况,给出了重要的求解过程及算法,还涵盖了图像处理、 无线通信、 音频信号处理及更多其他应用。全书分四个部分共24章,部分介绍本书所用到的主要数学知识,第二部分是本书的重点,详细讲述了基本ICA模型及其求解过程,第三部分讨论基本ICA模型的多种扩展形式,第四部分讨论ICA方法在不同领域的应用。
亚伯拉罕编著的《流形张量分析和应用(第2版) 》旨在为数学家、物理学家、工程和数学生物专业的全面介绍非线性分析的知识。书中介绍了流形、动力系统、张量和微分形式的背景知识和哈密顿力学、流体力学、电磁学、等离子动力学和控制理论等的应用。这本书起点低,读者只要了解本科生线性代数知识和高等微积分即可。
《纵向数据分析方法与应用(英文版)》旨在系统地介绍纵向数据分析的基本概念、理论设定和应用步骤,重点通过SAS计算机程序对实际数据进行分析,从而深入浅出地描述纵向数据分析的各类模型。书中涉及的统计方法包括各类描述性估算法、线性混合效应模型、效应的统计推断及估计、残差协方差结构类型、广义线性混合效应模型的理论性描述、二分组结局混合效应模型、多结局混合效应模型、各类潜变量发展模型、缺损数据分类及分析方法以及一些纵向分析方面的专题研究。 《纵向数据分析方法与应用(英文版)》着重于各类纵向分析模型的实际运用,而不拘泥于模型的纯理论推论,从而使对纵向数据分析有兴趣的科研人员以及大学生、研究生从中受益。
本书旨在研究算子理论中某些前沿论题并提供有关这些论题的必要基础知识,并假设读者仅具备研究生一年级劳神的课程中的知识,如一般拓扑、测度论和代数学。本书不会对论题面面俱到,因而许多初等论题或者省略或者只在问题中提及,本书希望尽快得到只要结果。
在数学和抽象代数中,群论研究名为群的代数结构,群在抽象代数中具有基本的重要地位。《Galois定理与群论》从一个方程能用根式求解所必须满足的本质条件开始研究,讲述了伽罗华定理与群论知识。全书分为:普及篇、基础篇及提高篇三部分,详细叙述了群论这门数学学科的发展及众多数学家在群论方向的研究成果。