这三本书涵盖了小学和初中阶段数学、几何、函数等学科的重点知识和学习方法,旨在帮助读者解决实际教学和学习中遇到的各种困难和痛点。首先,《不焦虑的数学》和《不焦虑的几何》从计算能力提升、难点讲解、思维方式培养等多个方面切入,为家长和孩子提供了一系列可行、实用的辅导方法,使家庭辅助教育更加丰富多彩。其次,《不焦虑的函数》则更深入地剖析了初中和高中阶段函数学习的要点,以及如何从小学平稳过渡到初中,并提供了针对性的学习思路和技巧,帮助学生和家长打好坚实的数学基础和提高成绩。 这三本书的共同特点是用例题详尽地分析知识点和考试技巧,帮助读者快速掌握数学、几何和函数等学科的核心内容,并有效解决学习中的各种困难。在阐述学科知识的同时,作者们不断强调正确的学习思维方式和习惯的重要性,从而帮助读
本书的内容主要包括:密度泛函理论(Densityfunctionaltheory,DFT)的基本概念,以及如何使用DFT方法对工程实际问题进行建模模拟和计算。内容包括:何谓密度泛函理论(DFT)、对于简单固体的DFT计算、DFT计算中的基本要素、固体表面的DFT计算、DFT计算振动频率、使用过渡态理论计算化学过程的速率、基于从头算动力学的平衡相图、电子结构和磁性、从头算分子动力学、在"标准"计算之外的精度和方法。
本书作为第四版,在第三版的基础上增加了一些由新技术产生的新的分析计算方法,并加入了矩阵、线性代数等一些基础计算方法。内容上系统阐述了有限单元法的基本原理及其工程应用,包括杆系结构,弹性力学平面问题,单元分析,整体分析,平面问题高次元,弹性力学轴对称问题,弹性力学空间问题,形函数、坐标变换、等参数单元与无线单元,各种平面与空间单元的比较、应用实例,弹性薄板,弹性薄壳,轴对称壳,弹性厚板和厚壳,流体力学问题,热传导问题,非线性有限元分析方法,塑性力学问题,混凝土徐变、一般黏弹性及黏塑性问题,弹性稳定问题,大位移问题,断裂力学问题,结构动力学问题,岩石力学问题,土力学问题,混凝土与钢筋混凝土结构,工程反分析与数值监控,网络自动生成、误差估计与自适应技术,矩阵,线性代数方程组,变分
本书主要继承了作者本人的小册子 The Zeta—function of Riemann 的内容.本书内容主要包括: ζ ( s )函数,狄利克雷级数与 ζ ( s )函数的关系, ζ ( s )函数的分析特点,函数方程,近似公式, ζ ( s )函数在临界带的次序.
内容简介众所周知,函数思想与不等式方法贯穿整个数学世界,且不等式是人们最喜爱、最欣赏的数学内容,进而兴起了不等式研究的热潮从知识内容上讲,不等式又划分为代数不等式三角不等式、几何不等式.为了让几何不等式结构更丰满、内容更丰富,使得其图文并茂、美不胜收,为了让几何不等式更具实用性、优美性、趣味性、欣赏性、收藏性,为了让几何不等式的光辉照亮人间,让几何不等式的花朵开满人间,芳香飘满人间,故作者怀着激动的心情写了此书.本书适合高等院校师生及数学爱好者研读.
内容简介
《集论》共分十章。第壹章至第四章讨论集及其结合,集的势、型及序数,第五章讲集系,内容包括环、体、Borel集及Suslin集;第六章和第七章为点集论,而Borel集及Suslin集在此获得进一步的阐述;第八章为空间的映象;第九章是实函数,第十章是比较近代的材料,内容包括Baire条件及半单叶映象,书末有一个附录,其中所列也是较新材料,但不加证明,作为正文中有关部分的参考。
本书是 部《 》象数学通史,分三卷(先秦汉唐卷、宋元卷、明清卷),以时间为线索,系统而深入地阐述了先秦至明清的象数易学的发展历程。
《航空基础技术丛书:航空材料技术》共分9章,从航空材料概论开始,分别介绍了高温结构材料技术、铝合金材料技术、钛合金材料技术、超高强度结构钢技术、透明材料与透明件制造技术、高温防护涂层材料技术、橡胶密封材料技术和先进航空材料检测技术等专业的基本情况及其发展。
本书主要继承了作者本人的剑桥小册子The?Zeta—function?of?Riemann的内容.本书内容主要包括:ζ(s)函数,狄利克雷级数与ζ(s)函数的关系,ζ(s)函数的分析特点,函数方程,近似公式,ζ(s)函数在临界带的次序.
地理学是一门古老的学科,初仅指地球的绘图与勘查,但发展到今天已经逐渐成为一门范围广泛的学科。本书共十三章,分四篇,囊括自然地理学、人口地理学、文化地理学、城市地理学等分支学科。全书以介绍地理学的发展、核心概念,以及四种系统性传统为开端,四大传统独立成篇。前三篇专门介绍地理学的分支学科,而区域分析传统作为全书后一篇,利用前三种传统和主题,并通过相互参照对其进行综合。相对于其他地理学书籍,本书特别突出了地理学与生活的相关性。对人体有害的天气现象、城市土地利用模式、城市垃圾与危险废物的处理等与我们生活密切相关的问题均有涉及。平实、生动的文字与丰富的实例,使本书极具可读性,读者通过本书亦会获得一种新的思维方式。
由罗斯著的《应用随机过程(概率模型导论1版)/图灵数学统计学丛书》是一部经典的随机过程著作,叙述深入浅出、涉及面广。主要内容有随机变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、新理论及排队论等,也包括了随机过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关随机模拟的内容,给随机系统运行的模拟计算提供了有力的工具。本版还增加了不带左跳的随机徘徊和生灭排队模型等内容。本书约有700道习题,其中带星号的习题还提供了解答。本书可作为概率论与数理统计、计算机科学、保险学、物理学、社会科学、生命科学、管理科学与工程学等专业随机过程基础课教材。
本书通过一百多幅彩图和丰富的数独、幻方和变形数独等谜题,从一个侧面真实地讲述了数学特别是高等数学到底是怎么一回事。本书是一本数学书,同时,更是一本趣味盎然的谜题书。总共有多少种数独?有多少种3×3的块可以作为数独的一部分?一个有解的数独至少要包含多少个数字?求解数独题目到底需不需要数学?作者通过本书展示了一个事实,那就是通过回答上面这些问题,可以打开一扇通往丰富有趣的数学世界的门。在书中,作者讨论了数独同拉丁方、图论和多项式理论的联系。书中的数独等题目非常新颖有趣,值得读者花时间钻研。通过阅读本书,读者将极大地改变对数独的看法和对数学的看法。
郝兆宽等著的《集合论(对无穷概念的探索)/逻辑与形而上学教科书系列》是“逻辑与形而上学教科书系列”中的一本。书中介绍了集合论的基础知识,共有集合与公理,关系与函数,实数的构造,基数,滤、理想与无界闭集,集合的宇宙,可构成集,力追等g章内容;除了讨论集合论的基本概念,还讨论了可构成集、力迫法等现代内容,同时还讨论了与连续统假设相关的一些哲学问题。编写本书的目的是让读者在初等集合论领域有一个坚实的基础。本书可以作为数学专业、计算机专业和哲学专业高年级本科生。同时,对于那些关心数学哲学以及当代数学基础问题的人来说,书中的知识也是必要的准备本书还含有大量的习题和思考题,有助于读者深入理解所介绍的内容。
吴悦辰编著的《三线坐标与三角形特征点》主要包括十章:三线坐标和重心坐标,三角形的特征点(一)——一些经典的几何特征点,三角形的特征点(二)——一些与透视相关的几何特征点,三角形的特征点(三)——共轭与变换,三角形的特征点(四)一一其他几何特征点,形形色色的直线,形形色色的三角形,形形色色的圆,三角形的二次曲线,三角形的三次曲线。本书适合数学爱好者参考阅读。
本书共分8章:点集拓扑学的一些知识,点集拓扑学的进一步知识,基本群与覆盖空间,单纯复形,流形,同调论与deRham理论,曲面的内蕴Riemann几何,嵌入R3中的流形,详细地介绍了拓扑学与几何学的相关知识,并给出了许多重要定理的证明方法.
法雷尔编著的《流形拓扑导论讲义(精)》的内容涵盖了流形拓扑学最基本的思想与结果,包括h—与s—配边定理,Pontryagin类的拓扑不变性、手术理论、代数K理论等,可以作为初学者进入这一领域的“路标”。《流形拓扑导论讲义(精)》可作为几何与拓扑领域的研究生教材或参考书,也可以供相关研究人员参考。
在这部开创性著作中,数学家格雷戈里?蔡汀提出了关于进化和生物创造性的一个数学理论,试图揭示生物学深层的数学结构。在阿兰·图灵和约翰·冯·诺伊曼的相关思想的基础上,作者进一步深化了生命作为不断进化的软件的思想,开辟了一个称为“元生物学”的新领域。 除了核心的数学证明,作者还从元生物学的视角重写了分子生物学的早期历史以及软件的人类发现史,重新审视了图灵和冯·诺伊曼的工作。他还探讨了元生物学的神学和政治学意涵,强调创造性之重要,呼吁我们要有足够的创造性去设计一个允许创造性的社会。
本书围绕“在产品全寿命周期成本低的情形下如何实现六西格玛质量水平的容差设计方法”这样一个目标展开研究,建立了一套基于产品全寿命周期六西格玛管理的容差设计方法与理论体系。主要内容包括:对传统容差设计仅关注制造成本的思想提出商榷。;提出了一种基于串、并行混合渐进迭代理论的设计早期阶段容差评估与设计方法,改进了传统容差设计主要集中在详细设计阶段的局限性等。