《DK数学百科(全彩)》内容简介:几千年来,人类一直处于探索、发现数学真理的征途中。数学试图为伟大的思想找寻简洁的解释方法,数学致力于发现特征并总结特征。从上古时代的莱因德纸草书、芝诺运动悖论,中世纪的二项式定理、斐波那契数列,文艺复兴时期的梅森素数、帕斯卡三角形,启蒙运动时期的欧拉数、哥德巴赫猜想,19世纪的贝塞尔函数、黎曼猜想、拓扑学,到近现代的无限猴子定理、模糊逻辑、四色定理,本书介绍了数学领域的诸多伟大思想,并用通俗易懂的语言进行阐释。让我们一起翻开这本书,品味数学的优雅与美丽。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
近代 数理逻辑学家王浩在数学、逻辑学、计算机科学领域有着超高天赋和开拓性成果,他一生痴迷于哲学研究,是对世界哲学作出过深刻贡献的华裔学者。本书是王浩的代表作,是其正面集中阐释自己哲学思想的作品。循着从柏拉图到哥德尔的“数学-哲学家”传统,王浩在书中 对实质事实主义一般立场进行了长篇阐发;广泛、深入地讨论了数学哲学的诸议题;探索了心灵与机器、数学与计算机、知识与生活等话题;还重点考察了逻辑和数学领域的一些基本概念。此次中译本 出版,由专业译者精心翻译,以助读者 好地理解王浩的数学哲学思想。
人类发明数学公式,来描绘浩瀚宇宙和人生百态。世界的繁华秀丽,映衬出符号公式的简洁之美。爱因斯坦的质能方程和杨振宁的规范场,摸索出宇宙 游戏的规则;费马大定理和欧拉恒等式,揭示出宇宙变化背后的数学世界;从凯利公式到贝叶斯定理,逐渐 预测人类行为;蝴蝶效应的洛伦兹方程组和三体问题,则告诉我们数学的界限。 量子学派倾心打造《公式之美》,包含23个普遍、深刻、实用的公式,书写天才们探索自然和社会的辉煌历史。
戴建生编著的这本《机构学与机器人学的几何基础与旋量代数》起始于直线几何与线性代数,自然过渡到旋量代数与有限位移旋量,紧密联系李群、李代数、对偶数、Hamilton四元数、Clifford对偶四元数等现代数学基础,首次全面、深入地阐述旋量代数在向量空间与射影几何理论下的演变与推理,提出旋量代数与李代数、四元数代数以及有限位移旋量与李群之间的关联理论,展现出旋量理论与经典数学以及现代数学的内在关联,总结提炼出许多论证严密、意义明确的引理、定理与推论,由此阐述篇“几何基础、旋量代数与李群、李代数”,给出机构学与机器人学的几何基础与数学理论。 在第二篇“旋量系理论及机构约束与自由运动”中,运用集合论与线性代数等经典数学推导并揭示旋量系、旋量多重集及其阶数与基数的本质内涵,提出并阐述旋量系关联关系理论
《数学基础研究》是后期维特根斯坦有关数学哲学的研究结晶。其主要内容是根据其后期的新的哲学理解对当时流行的数学基础研究中的形式主义思潮、逻辑主义思潮、直觉主义思潮进行分析和批评。维特根斯坦在其打字稿中,记录了其对于数学的思考。《数学基础研究》收录了其打字稿中他对于数学的一些评论,包括完整收录了TS213第二部分内容、TS222和MS164。
几何蕴含无穷魅力,本书汇其精华,充分展现其神奇、迷人、和谐、优雅之处,挖掘历代探寻者的成就、智慧和精神.本书共28章,紧扣现行初高中数学教材中的几何内容,并遵循其逻辑顺序,以教材为起点,进行挖掘、引申、拓展,探寻知识的发生、发展过程及纵横联系,了解知识背后的故事及人文精神,开发新的知识生长点.促进“ ”倡导的“综合与实践”、探究性学习和跨学科学习.认识数学的科学价值、应用价值、文化价值和审美价值.本书适合中学生课外阅读,也适合中学数学教师、数学教育工作者和大学数学专业师生参考.
Origin 是由 OriginLab 公司开发的一个科学绘图与数据分析软件,该软件具有丰富的绘图功能及数据处理与分析功能,已被广泛应用于科技论文与论著的出版。 本书共 8 章,汇集 150 个实例,涵盖 Origin 基础与基本操作、绘图规范及其导出、数据类型及其导入方法、二维绘图、三维绘图、拟合与分析、数据与信号处理、高效率绘图等内容。本书内容翔实、实例丰富、实用性强,可使读者在较短时间内掌握 Origin 2023,并能从具体实例中获取 绘图技能和绘图优化灵感。 本书既适合作为高等院校和科研院所的科技绘图及数据分析实例教学用书,也是科技企业的科技工作者和工程技术人员的宝典。
本书从数学分析的角度阐述了矩阵分析的经典和现代方法,主要内容有特征值、特征向量、范数、相似性、酉相似、三角分解、极分解、正定矩阵、非负矩阵等.新版全面修订和更新,增加了奇异值、CS分解和Weyr标准范
《离散数学内容提要与习题解析》是与《离散数学》(第3版)(西安交通大学出版社,2012)配套的教学指导用书。每章包括内容提要、学习要求、习题与解答提示、习题详解四部分。“内容提要”总结了每章的主要定义、定理、公式、算法和重要的结论;“学习要求 ”给出了学习者在每章节应掌握的概念、结论、方法;“习题与解答提示”给出了习题中涉及的概念、定理、算法、证明方法和思路,对其中的典型习题,给出了多种解题思路或构造方法;“习题详解”给出了习题的详细解答。解答的习题共265道,涵盖了数理逻辑、集合论、代数系统、图论等离散数学模块的基本内容和典型的解题方法。 《离散数学内容提要与习题解析》既可以作为主教材的配套教学用书,也可以单独使用,为学习离散数学的读者在解题能力和技巧训练方面提供有益的帮助。
二乘估计理论与方法在无源定位领域应用广 泛,并且取得了显著成果。然而,现有的二乘定 位算法大都是针对具体而特定的观测方程设计的,缺 乏统一的模型框架。为了建立统一的数学模型和理论 框架,本书总结归纳出无源定位中的八类二乘估 计理论与方法。针对每一类二乘估计理论与方法 ,分别设计一个无源定位算例,并给出其仿真实验结 果,用以验证书中算法推导的正确性和理论性能分析 的有效性。本书最后描述一些无源定位中的推广场景 ,并将提出的部分二乘估计理论与方法推广应用 于其中。 王鼎编著的《无源定位中的广义二乘估计理 论与方法》可作为高等院校通信与电子工程、信息与 信号处理、控制科学与工程、应用数学等学科的专题 阅读材料或研究生选修教材,也可供从事通信、雷达 、电子、航空航天等领域的科学工作者和工程技术人 员
本书是在MIT开设概率论入门课程的基础上编写的,内容全面,例题和习题丰富,结构层次性强,能够满足不同读者的需求。书中介绍了概率模型、离散变量和连续变量、多元变量以及极限理论等概率论基本知识,还介绍了矩母函数、条件概率的现代定义、独立变量的和、小二乘估计等内容。本书可作为所有高等院校概率论入门的基础教程,也可作为有关概率论方面的参考书。
本书是Springer统计系列丛书之一,旨在让读者深入了解数据挖掘和预测。 随着计算机和信息技术迅猛发展,医学、生物学、金融、以及市场等各个领域的大量数据的产生,处理这些数据以及挖掘它们之间的关系对于一个统计工作者显得尤为重要。本书运用共同的理论框架将这些领域的重要观点做了很好的阐释,重点强调方法和概念基础而非理论性质,运用统计的方法更是突出概念而非数
《现代数学基础:微分方程与数学物理问题(中文校订版)》包含特为初学者,简明和自包含的基本经典方法的介绍,轻松进入李群分析方法的学习,书中所描述的方法有着广泛的应用,友好的描述方式和实用的例子使《现代数学基础:微分方程与数学物理问题(中文校订版)》拥有众多的读者群。