9787115435590 普林斯顿微积分读本(修订版) 99.00 9787115543776 普林斯顿概率论读本 139.00 9787115543844 普林斯顿数学分析读本 69.00 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿概率论读本》 本书讲解概率论的基础内容, 包括组合分析、概率论公理、条件概率、离散型随机变量、 连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等, 内容丰富, 通俗易懂, 并配有丰富的例子和大量习题, 涉及物理学、生物学、化学、遗传学、博弈论、经济学等多
《矩阵之美(算法篇)》对多种**矩阵算法进行了新颖、全面且深入的解读。具体而言,第1章从代数、几何、分析和概率等多个角度详细介绍了*小二乘法;第2章对主成分分析进行了深入解析,涵盖代数、几何、子空间逼近与概率视角;第3章探讨了一种新兴的非对称数据分析方法 主偏度分析,并深入剖析了其性质和理论内涵;第4章介绍了典型相关分析及其关键性质,并从几何角度对其本质进行了进一步的阐释;第5章聚焦于非负矩阵分解,探讨了其与混合像元分析、奇异值分解、聚类分析及KKT条件的关联;第6章重点介绍局部线性嵌入,并将其与其他典型非线性特征提取方法进行了系统比较;第7章深入介绍**的傅里叶变换,并从矩阵角度对其内涵进行了新的诠释;第8章介绍了一种新颖的一阶统计分析方法 连通中心演化,重点阐明其在数据中心识别方面的优势和潜
本书第一部分主要介绍了广义函数论的基本内容,包括广义函数的定义、正则化、局部理论、乘子、卷积与张量积以及它的Fourier变换等经典内容;作为应用,考虑了常系数线性偏微分方程的基本解。第二部分主要介绍了经典函数空间的基本内容,包括Sobolev空间、H。lder空间、Lorentz空间在内的常见函数空间;Sobolev空间的延拓定理、嵌入定理与迹定理,以及Littlewood-Paley理论和Bony仿积分解。为了方便读者学习,我们在第三部分附录中补充了部分相关内容,并在各章节后配置了习题,使得本书基本上形成了一个自洽的体系。若作为授课教材,一个80学时的课程可以涵盖本书的主要内容,120学时则足以涵盖全部的内容。
《普林斯顿微积分读本(修订版)/(美)阿德里安.班纳》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的很好好的指导书。 《普林斯顿数学分析读本/图灵数学统计学丛书》 本书是《普林斯顿××读本》系列图书的第二本,该套书的论述风格友好、平易人,通过作者与读者之间的互动对话和相关示例很好清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两
本书主要介绍了数学分析中的内容,以构造数系和集合论开篇,逐渐深入到级数、函数等高等数学内容,举例详实,每部分内容后的习题与正文内容密切相关,有利于读者掌握所学的内容。本书在附录部分还介绍了数理逻辑基础和十进制,突出了严格性和基础性。 本书适合已经学习过微积分的本科生和研究生,以及具有数学专业知识的读者。
《分数阶积分和导数:理论与应用》是Stefan G.Samko,Anatoly A.Kilbas,Oleg I.Marichev所著英文专著Fractional Integrals and Derivatives:Theory and Applications的中文翻译版本。《分数阶积分和导数:理论与应用》阐述了几乎所有已知的分数阶积分-微分形式,并对它们进行了相互比较,强调了一个函数能否被另一个函数分数阶积分表出的问题,突出了已知函数的分数阶积分可表示性问题比它的分数阶导数存在性问题更为重要,揭示了在某种意义下,函数分数阶导数的存在性等价于其分数阶积分的可表示性,同时给出了分数阶积分-微分在积分方程和微分方程中的大量应用。此外,应原著作者要求,《分数阶积分和导数:理论与应用》增加了一个附录,介绍了第三作者及其合作者开发的分数阶微积分的计算机代数系统。
本书译自《燃烧理论与数值方法》英文第3版。本书从燃烧学的一些基本概念和原理入手,深入介绍了基本的燃烧理论以及如何通过数值仿真,准确、真实地实现燃烧现象。全书共10章,前3章为燃烧领域的初学者提供了良好的入门教材,第4~6章为从事湍流燃烧数值模拟的研究生和工程师提供了一个不错的参考,第8章和第10章为燃烧不稳定性领域的学者提供了一些相关知识和精彩素材,第7章的壁面与火焰相互作用和第9章的边界条件处理,为实现高保真燃烧器数值模拟提供了关键技术。全书语言流畅,图文并茂,论理清楚,实用性强,是一本燃烧学方面不可多得的经典教材。本书可作为机械工程、热能与动力工程和相近专业领域学生的教材,也可供机械、航天、航空等动力领域的研究人员参考使用。
本书系统地阐述了微积分学的基本理论。在叙述上,作者尽量作到既严谨而又通俗易懂,并指出概念之间的内在联系和直观背景。原书分两卷,第一卷为单变量情形,第二卷为多变量情形。 第二卷中译本分为两册出版。本书是第二卷第一分册,包括前三章。第?章详论多元函数及其导数,包括线性微分型及其积分,补充了数学分析中最基本的概念的严密证明;第二章在线性代数方面为现代数学分析的基础准备了充分的材料;第三章叙述多元微分学的发展及应用,包括隐函数存在定理的严密证明,多元变换与映射的基本理论,曲线、曲面的微分几何基础知识以及外微分型等基本概念。原书有练习解答,分别编入各分册。 译者(按内容顺序):邵士敏、周建堂、张锦炎(第一章)、刘婉如(第二章)、林建详、张顺燕、朱德威(第三章)、林源渠(解答)。
这是当今关于偏微分方程 (PDE) 的*权威教材的第二版。它给出了PDE理论学习中现代技术的总览,特别注重非线性方程。本书内容广泛,阐述清晰,已经是PDE方面经典的研究生教材。在本版中,作者做了大量改动,包括 新增非线性波动方程的一章, 超过 80 个新习题, 许多新的小节 大大扩充了参考文献。
Poincar 奖得主 Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第 4 部分侧重于算子理论,尤其是 Hilbert 空间。中心主题是谱定理、迹类理论和 Fredholm 行列式,以及无界自伴算子的研究。此外还介绍了正交多项式理论和关于 Banach 代数的长章,包括交换和非交换 Gel'fand-Naimark 定理以及对一般局部紧致Abel群的Fourier分析。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。
计算,实际上是解决问题的过程。人们希望用计算机能找到解决一切问题的方法,因此在计算领域建立了算法理论和算法模型,并根据各种问题提出具体算法。而计算的复杂性是现代数学中最令人着迷的领域之一。本书通过几个经典的计算问题:哥尼斯堡七桥问题、汉密尔顿路径问题、整数分解和国际象棋问题,浅探计算的魅力。
本书以 Python 软件为基础, 详细介绍了数学建模的各种常用算法及其软件实现, 内容涉及高等数学、工程数学中的相关数学实验、数学规划、插值与拟合、微分方程、差分方程、评价预测、图论模型、多元分析、Monte Carlo 模拟、智能算法、时间序列分析、支持向量机、图像处理等内容, 既有对算法数学原理的详述, 又有案例和配套的 Python 程序. 本书含有 Python 快速入门基础, 可以帮助 Python 零基础的读者快速掌握Python 语言. 但对于没有其他任何编程语言基础的读者, 建议参考一些更加具体的 Python 相关书籍.
Poincar 奖得主Barry Simon 的《分析综合教程》是一套五卷本的经典教程,可以作为研究生阶段的分析学教科书。这套分析教程提供了很多额外的信息,包含数百道习题和大量注释,这些注释扩展了正文内容并提供了相关知识的重要历史背景。阐述的深度和广度使这套教程成为几乎所有经典分析领域的宝贵参考资料。 第3部分讨论了点态极限(通过包含遍历定理和鞅收敛来超越通常关注的Hardy-Littlewood极大函数)、调和函数和位势论、框架和小波、[Math Processing Error] 空间(包括有界均值振荡(BMO))以及后一章中的许多不等式,包括Sobolev空间、Calderon-Zygmund估计和超压缩半群,进而回到第1部分的主题。 本书可供专业研究人员(数学家、部分应用数学家和物理学家)、讲授研究生阶段分析课程的教师以及在工作和学习中需要任何分析学知识的研究生阅读参考。
本书以点集拓扑核心内容为基础,从经典拓扑和内蕴拓扑的应用出发,结合理论计算机科学和信息科学等进一步阐述无点化拓扑、Domain理论、数字拓扑与数字图像信息处理、形式概念分析与广义近似空间理论(粗糙集理论)、宇宙拓扑模型等。全书共12章。第1?3章是点集拓扑的经典内容;第4章为范畴论基本概念和无点化拓扑;第5?8章是序结构理论及拓扑学在Domain理论中的应用;第9章是数字拓扑及在数字图像处理方面的应用;第10章是关于形式背景的序结构和拓扑理论;第11章是广义近似空间和抽象知识库的拓扑理论;第12章是对宇宙空间拓扑模型的探讨等。
《Vlasov-Boltzmann型方程的数学理论》主要研究两类带外力场的Boltzmann方程,包括Vlasov-Poisson-Boltzmann(VPB)方程和Vlasov-Maxwell-Boltzmann(VMB)方程的谱分析与整体强解的渐近行为。主要内容包括:第1章介绍**Boltzmann方程的谱分析,并且利用谱分析建立Boltzmann方程整体强解的存在性和*优衰减速度估计;第2章介绍VPB方程的谱分析、能量估计和整体强解的存在性和*优衰减率;第3章至第4章基于谱分析研究VPB方程的格林函数和整体强解的时空点态估计,以及扩散极限的收敛性和收敛速度估计;第5章介绍VMB方程的谱分析、能量估计和整体强解的存在性和*优衰减率。《Vlasov-Boltzmann型方程的数学理论》*突出的特点是建立了带外力场的Boltzmann方程的谱分析,并且把谱分析方法应用到研究带外力场的Boltzmann方程整体强解的渐近行为,包括解的*优时间衰减率、格林函数的点态估计和流体
《缩减多体系统传递矩阵法》首次全面系统地介绍了国家重大项目研究成果之一,多体系统动力学多体系统传递矩阵法的理论——缩减多体系统传递矩阵法。该方法具有无需系统总体动力学方程、系统矩阵阶次低且与系统自由度无关、计算速度快、计算稳定性高、程式化程度高的特点,发展了多体系统动力学分析方法,大幅提升了计算能力和性能,为构造多体系统动力学仿真设计大型通用软件提供了快速并稳定的计算基础;揭示了任意多体系统中任意体和铰的任意联接点的状态矢量之间严格的线性传递规律;提供了相关元件和子系统传递方程和传递矩阵的一般形式;针对囊括各种拓扑结构链式、闭环、树形和一般多体系统,提出了4条总传递方程自动推导定理,定义了3种缩减变换,建立了各种元件的缩减传递方程和缩减传递矩阵普遍递推公式,据此形成了适用于各
《矩阵计算》是已故美国科学院院士、美国工程院院士吉恩 戈卢布(Gene H. Golub)等人的经典巨著,是矩阵计算领域的标准性参考文献。本书系统介绍了矩阵计算的基本理论和方法.内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和*小二乘法、特征值问题、Lanczos 方法、矩阵函数及专题讨论等.书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献.第4 版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。
本书将概率论和统计推断融合在一起,用新的观点生动地描述了概率论在物理学、数学经济学、化学和生物学等领域中的广泛应用,特别阐述了贝叶斯理论的丰富应用,弥补了其他概率论和统计学教材的不足,全书分为两部分: 部分包括10章,讲解抽样理论、假设检验、参数估计等概率论的原理及其初级应用;第二部分包括12章,讲解概率论的 应用,如在物理测量、通信理论中的应用。本书还附有大量习题,内容全面,体例完整,本书内容不局限于某一特定领域,适合涉及数据分析的各领域工作者阅读,也可作为本科生和研究生相关课程的教材。
本书汇集了解析数论中一系列有趣的话题,是解析数论领域的入门读物,重点关注整数的剖分,即对整数的乘法结构的研究。本书涵盖了一些最重要的主题,包括算术函数的全局和局部性态、光滑数的广泛研究、Hardy-Ramanujan和Landau定理、特征和Dirichlet定理、abc猜想及其一些应用,以及筛法。本书最后还专门讲述了整数复合指数的问题。 本书每章末尾都有一系列精心挑选的问题。这些问题可以强化读者对材料的理解。作者提供了偶数号问题的解答,使得本书非常适合那些想要测试其对书中理论的理解程度的读者。
本书系统介绍了凸分析基础的五个核心部分。①涉及与凸集理论有关的线性子空间、仿射集、超平面、凸包、单纯形、闭包、内部、相对内部、凸集分离和支撑超平面等基本性质和一些重要定理。②涵盖了与凸锥有关的顶点锥、锥包、凸锥包、回收锥、共轭锥(正极锥)、负极锥、法锥与切锥、障碍锥、凸锥分离、多面体、多面锥和多面体集等基本性质和重要定理。③细述了实值(有限值)凸函数、可微凸函数、正常与非正常凸函数、复合凸函数、半连续凸函数、闭凸函数、连续凸函数和Lipschitz连续凸函数、共轭凸函数、支撑凸函数、规范凸函数、严格凸函数、半严格凸函数、显凸函数等性质和定理。④阐述了拟凸函数、半严格拟凸函数、显拟凸函数、伪凸函数、二次可微广义凸函数和广义单调性等广义凸函数的基本理论与性质。⑤讨论了凸函数的微分学基本理论,