本书对非线性*化的理论、算法及相关技术作了比较系统的介绍。在内容的选取方面,尽可能避免过分复杂的理论分析,以适应不同专业、不同层次技术人员对*化技术的需求,另外,也尽可能地增加一些数值例子或经济管理方面的应用实例。全书共分9章。*章主要介绍*化的基础理论;第二章介绍无约束*化问题的*性条件以及线搜索技术;第三章主要介绍无约束*化算法,主要有*速下降法、Newton法、共轭梯度法;第四章主要讨论约束优化问题的*性条件;第五章介绍Lagrange对偶理论;第六章介绍线性规划;第七章介绍二次规划的求解算法;第八章介绍一般非线性约束*化问题的罚函数法;第九章给出两种特殊规划:几何规划和多目标规划,并给出一些应用实例。
本书是大学数学系本科生的复变函数教材,是作者在南京大学数学系复变函数课程讲义的基础上修订而成。全书共分八章,主要内容包括复数,复变函数,复变函数的积分,级数,留数,共形映射,调和函数和解析开拓。
癌症、疑难慢性病如何治疗和康复?本书作者通过自身的经历,对治疗“ 症”提出了一些新思路、新理念和新方法。倡导文化的医学功能,是本书的主题,也是作者三十余年与癌症和平共处的经验总结。文化的力量,比我们想象的强大。
复变函数与积分变换 是普通高等院校理工科专业的一门重要基础课,它是解决实际问题的重要工具,在自然科学和工程技术的许多领域有着广泛的应用。为了帮助在校大学生学好这门课程,依据*制定的高等学校《工科数学课程教学基本要求》,编写了《复变函数与积分变换练习题集》。 在编排方面,根据课程各章节教学内容的先后次序以及基本概念、基本方法、重点、难点,精选了各类练习题,包含判断题、选择题、填空题、计算题、解答题、证明题等,*后给出7套综合测试题,可以帮助学生检测对所学知识的掌握程度。《复变函数与积分变换练习题集》的习题取材适当、难易兼顾,具有较强的针对性和代表性,能帮助学生掌握基本概念及理论,开拓解题思路,提高综合分析能力,巩固学习成果。
《几何原本》成书于公元前300年左右,全书13卷,是古希腊数学家欧几里得的一部不朽之作。它既是一本数学著作,也是哲学巨著,标志着人类首次完成了对空间的认识。《几何原本》自问世之日起,在长达2000多年的时间里,历经多次翻译和修订,自1482年少有印刷本出版,至今已有1000多种不同版本。欧几里得建立了定义和公理,并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,并系统地总结了泰勒斯、毕达哥拉斯及智者学派等前代学者在实践和思考中获得的几何知识,集整个古希腊数学的成果与精神于一身。对人们理性推演能力的影响,即对人的科学思想产生了深刻且巨大的影响。
本书为学术专著,对时间依赖变分不等式的解的存在性、*性、算法、解集的性质和时间依赖变分不等式的应用进行了研究,介绍了与变分不等式相关的基本情况、来源于粘弹性材料的准静态摩擦接触问题的广义发展变分不等式,将广义发展变分不等式从Hilbert空间扩充到了Banach空间,在一定假设条件下,利用Banach不动点定理,得到了广义发展变分不等式解的存在性和*性,给出了这个问题的两个数值逼近格式,并给出了解的存在性和误差估计。本书研究了有限维空间中的微分逆变分不等式组、有限维空间中一类微分逆混合变分不等式,在一些合适的条件下,给出了可逆混合变分不等式的解集满足线性增长的条件和可逆混合变分不等式的解集的性质,得到的结论扩展并丰富了可逆混合变分不等式和可逆变分不等式的某些已有的结果。
《解析几何的技巧(第4版)》主要内容包括:距离公式、平行四边形的顶点、过已知点的平行线、过已知点的垂线、同心圆、渐近线相同的双曲线、复数与旋转、三角形的心、法线式、一次式、表示直线的高次方程、过原点的曲线等。
内容简介: 数理逻辑是离散数学的重要组成部分之一,是计算机科学的数学基础。《数理逻辑引论(修订版)》内容主要侧重于逻辑演算,即命题逻辑演算和一阶谓词逻辑演算,这些内容是构成数理逻辑其他分支的共同基础。全书共分5章,分别介绍了数理逻辑的研究对象、研究内容和研究方法;命题逻辑的基本概念、命题逻辑演算形式系统的组成、基本定理及其性质定理;一阶谓词逻辑演算形式系统的基本概念、组成、基本定理及其性质定理、一阶语言的语义等。 《数理逻辑引论(修订版)》可用作高等院校计算机专业离散数学的教材或教学参考书,也可供从事计算机科学、人工智能方面的科技人员参考。
本书作者在泛函分析、算子代数和算子理论、特别是用C*代数解决希尔伯特空间上的算子问题的研究上很有成就。本书曾作为美国伯克利大学和丹麦奥胡斯大学的主要教材,是一本关于C*代数和C*代数在希尔伯特空间上的表示理论的导论性著作。全书简明扼要地介绍了C*代数与GCR代数之间的关系。要求读者熟悉泛函分析、测度理论和希尔伯特空间理论。可供抽象代数专业的研究生和研究人员参考。目次:①基础知识,②相重数理论,③波莱尔结构,④从交换代数到GCR代数。