本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。
邱法玉、宋金丽主编的《高等数学学习辅导与同 步练习(国家骨干高职院校基础课系列教材)》根据教 育部制定的《高职高专教育高等数学课程教学基本要 求》,以国家骨干高职高专办学方向和培养目标为指 导,兼顾各专业对高等数学知识和技能的基本需求编 写而成。 本书既从宏观上对各章知识点、重难点、内在联 系进行系统的梳理,又从微观上对重点题型、解法、 注意事项进行分门别类的总结与例题示范,有利于学 生对知识的掌握以及应用能力的提高。 本书与国家骨干高职院校系列教材《高等数学》 配套使用,一方面能做到对教材知识点的呼应、总结 与强化,另一方面题目类型全、覆盖面广,题目从基 本到综合,由易到难、循序渐进,充分注重基础知识 的巩固、基本方法和自学能力、解题能力、应用能力 以及分析问题、解决问题能力的训练
本书论述了自17世纪以来的数理统计学发展的简要历史,内容包括概率基本概念的起源和发展,棣莫弗的二项概率正态逼近,贝叶斯关于统计推断的思想,最小二乘法,误差分布,社会统计学家对数理统计方法的主要贡献,高尔顿引进相关回归及皮尔逊将其完善的过程,戈塞特等人对小样本理论的贡献,皮尔逊等人发展假设检验这一分支的过程等。本书可供具备初等概率统计知识的读者阅读。
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,分析一些程序设计中常用的数学知识和数学方法。
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是第一本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法
本书是作者多年来在大学生数学竞赛辅导和考研辅导经验的基础上编写而成的.全书共分为13 章,每章包括4 个模块,即知识要点、典型例题分析、深化训练以及深化训练详解.本书编写的目的主要有两个:一是帮助工科类、经管类本科生备考全国大学生数学竞赛,使学生能够在短时间内迅速掌握各种解题方法和技巧,提升学生综合分析问题、解决问题的能力;二是为了满足工科类、经管类本科生考研的需要. 在例题和习题选编方面,精选了部分有代表性的数学竞赛真题和考研真题,同时注重例题、习题的创新,按题型分类进行合理编排,使学生能够尽快地适应考研题型,从容应对考试.本书既可以作为普通高等院校工科类、经管类本科生参加全国大学生数学竞赛的辅导用书,也可以作为工科类、经管类本科生考研深化训练用书.
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关专业的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,系统分析一些程序设计中常用的数学知识和数学方法。
《高等数学引论2(英文版)Introduction to Advanced Mathematics(2)》 是我国著名数学家华罗庚在上世纪60年代编写的教材,曾在中国科学技术大学讲授。全书包含了微积分、高等代数、常微分方程、复变函数论等内容。全书反映了作者的“数学是一门有紧密内在联系的学问,应将大学数学系的基础课放在一起来讲”的教学思想,还包括了作者的“要埋有伏笔”、“生书熟讲,熟书生温”等教学技巧,书中还介绍了数学理论的不少应用。这使得本套书不同于许多现行的教科书,是一套有特色、高水平的高等数学教材。 《高等数学引论2(英文版)Introduction to Advanced Mathematics(2)》 册包括实数极限理论、微分和积分及其应用、级数理论、方程的近似解等内容、多元函数的微积分、多重级数理论、曲线及曲面、场论、Fourier级数、常微分方程组等内容;第二册主要介绍复变函
《高等数学疑难问题选讲》是“高等学校大学数学教学研究与发展中心”立项资助的教学研究项目成果。《高等数学疑难问题选讲》编写的主要目的是为了帮助从事“高等数学”教学的青年教师更深刻地领会教学内容,提高教学水平和教学能力。全书分章按问题编排,各问题之间相对独立,便于读者查阅。
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法
该教材内容主要涵盖材料的基础知识介绍、原子的结构与键合、金属和陶瓷的结构、高分子结构、固体缺陷、扩散、力学性能、变形和强化机制、失效、相图、相变、电性能、材料类型及其应用、材料的合成制备与加工、复合材料、材料的腐蚀与降解、热性能、磁性能、光学性能、材料科学与工程所涉及的经济,环境和社会问题 。 本书内容全面、先进。不仅是材料学科的必修课教材,也是应用物理、化学工业、信息工程、生物工程、电子电工、车辆工程、航空航天等专业的必要补充教材。也可为专业人员提供参考价值。
针对当前高等数学教学的现状分析,《高等数学的教学改革策略研究》一书应需而生。本书主要围绕高等数学的教学思想改革策略研究、高等数学的教学内容改革策略研究、高等数学的教学主体改革策略研究、高等数学的教学目标改革策略研究、高等数学的教学方法改革策略研究、高等数学的教学模式改革策略研究、高等数学的教学评价改革策略研究、高等数学的教学实践改革策略研究等内容进行了阐述,以期通过本书的分析研究,能够对高等数学的教学改革有所助益。
《高等数学(第四版 下册)》的主要特色是以现代数学的观点审视经典的内容,科学组织并简洁处理相对成熟的素材,对分析、代数、几何等方面作了统一的综合处理,揭示数学的本质、联系和发展规律;注重数学概念的实际背景和几何直观的引入,强调数学建模的思想和方法;在适度运用严格数学语言的同时,注意论述方式的自然朴素、易于理解;配有丰富的图示、多样的例题和习题,便于学生理解和训练。全书的深度和广度能适应多数专业的数学基础教学需要。下册包括多元微积分、级数、常微分方程、概率论与数理统计。《高等数学(第四版 下册)》可作为高等学校理科、工科和技术学科等非数学类专业的教材,也可供经济、管理等有关专业使用,并可作为上述各专业的教学参考书。
《全国大学生数学建模竞赛湖南赛区论文集(2013)》收录了2013年全国大学生数学建模竞赛湖南赛区获得全国一等奖的部分论文。这些论文分别围绕“车道被占用对城市道路通行能力的影响”、“碎纸片的拼接复原”和“古塔的变形”这三个实际问题展开研究,从不同的角度出发,综合运用多种数学方法,建立了各具特色的数学模型。为了保持论文原貌,《全国大学生数学建模竞赛湖南赛区论文集(2013)》只做了符号和文字上的订正,没有进行大的改动。同时,每篇论文都附有指导教师点评。 《全国大学生数学建模竞赛湖南赛区论文集(2013)》可作为高等院校数学建模课程的参考用书,也可作为数学建模竞赛的培训资料。
《高等数学轻松学(第2版)》是一本教人如何学习高等数学的书。它的关注点不是定义、定理、性质,以及后两者的证明,而是以一道道具体的题为切入点,揭示数学问题的内在逻辑和方法选择的前因后果。它既可以帮助初学高等数学的本科生学好数学,也可以作为考研数学复习的参考书。 《高等数学轻松学(第2版)》共有极限与连续、一元函数微分学、一元函数积分学、常微分方程、代数视角的多元函数微积分学、几何视角的多元函数微积分学、无穷级数七个内容,详细阐述了44个问题、267道例题,囊括了各类高等数学教材的主要内容,以及全国硕士研究生统一招生考试数学一、数学二、数学三的主要考点。
《从整数谈起》共5章,包括:整数和它的表示,同余,方程的整数解,整点与逼近,整数的应用。《从整数谈起》主要介绍整数的各种性质和由整数引申出来的各种数学问题和故事。《从整数谈起》适合数学爱好者参考阅读。