本书介绍了线性代数的基本理论,主要包括用消元法解高阶方程组(包括适定、超定和欠定),用向量空间理解线性代数,以及线性变换的实际应用三个方面。通过近50个应用实例,介绍了它们的建模方法和解题程序。 本书的特色:(1) 实用化:本书以工科的后续课程及实际工程问题的解题需要选择内容,包含十几个应用例题;(2) 大众化:简化理论,使具有高中毕业程度的读者用较少的学习时间(约30学时)就能基本掌握;(3) 现代化:用计算机软件(MATLAB)来解决问题,不依靠笔算。 本书的读者对象为在职工程师(继续教育读物)、应用型技能型专业的学生(以本书为线性代数教材)以及普通高校本科学生(以本书为参考书)。
《高等数学典型例题分析》是以同济版《高等数学》(第七版)为蓝本编写的学习辅导书,全书共分11章,内容包括:一元函数与极限、导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、常微分方程及其应用、向量代数空间解析几何、多元函数微分学及其应用、重积分、曲线积分与曲面积分、无穷级数,每章内容包括内容提要、例题、思考题三部分,内容提要给出相关的概念、定理和公式。例题注重对解题思想、解题方法的分析和总结,培养学生的数学思维,思考题帮助读者巩固、拓展所学数学知识。 《高等数学典型例题分析》例题典型,覆盖面广,解题方法清晰完整,解题思路分析透彻,归纳总结全面,《高等数学典型例题分析》可作为高等学校大学数学课程的教学参考书、习题课教材,以及考研复习用书,
《高等数学同步辅导》与同济大学应用数学系编写的《高等数学》(本科少学时类型)教材相配套,分上、下两册,共十一章,包括函数与极限、导数与微分、中值定理与导数应用、不定积分、定积分及其应用、微分方程、向量代数与空间解析几何、多元函数微分法及其应用、重积分、曲线积分、无穷级数等内容。每一章由内容摘要、典型例题与同步练习、练习题(题后附有参考答案)三部分组成。本书主要阐述了《高等数学》的基本理论和基本方法,剖析了《高等数学》的重点和难点。本书由周晖杰等主编。
本书从二次型,集合与映射,线性空间,线性变换, 矩阵,欧氏空间等方面,精选了494道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都有对本节主要定义,定理和重要结构作了简要的概述。可供高校师生,中学教师和广大数学爱好者学习参考。
本作业集为适应应用型本科人才的培养要求而编写,分为A、B两册. 本册为A册,内容涉及多元函数微分法及其应用(多元函数的基本概念,偏导数,全微分及其应用,微分法在几何上的应用,多元函数的极值及其求法)、重积分(三重积分的概念及其计算法,利用柱面坐标计算三重积分)、曲线积分与曲面积分(格林公式及其应用,对面积的曲面积分,对坐标的曲面积分)、无穷级数(常数项级数的概念和性质,常数项级数的审敛法,函数展开成幂级数)和微分方程(微分方程的基本概念,可分离变量的微分方程)。 此外,附录中还给出了习题的参考答案。
本书以大学复变函数的学习内容为依据,以*研究生考试大纲为依据安排章节。每章按题型分类,每个题型中包含题型特点及解题指导。为方便不同学习阶段的读者使用本书,编写过程中每章内容分为两部分:*部分为基本题型,作为在校生学习以上课程时的同步学习指导使用,其特点为所选均为基本题目;第二部分为综合提高题型,一方面可供读者在本课程结束时复习、总结使用,另一方面为备考硕士研究生入学考试的读者提供复习的工具。为加深读者学习的印象、提高学习效果,题中除包括解题过程外,还有思路探索、方法点击,进一步对题目进行分析、总结。
本书是根据普通高等医药院校数学教学要求编写而成的数学基础课程教材,本书共分6章,分别阐述了函数、极限与连续;导数与微分;导数的应用;不定积分;定积分及其应用;常微分方程等医药学研究巾所涉及的数学基础知识.以基本概念、基本理论与数学方法为重点,结合医药实例对各章内容进行详细讲解,并配有适当的习题,本书在每章内容结束之后,均配有相应的数学历史知识与著名数学家生平以提高学生对数学的学习兴趣。
本手册包含三部分内容:高等数学(微积分)、线性代数、概率论与数理统计.归纳总结了三部分内容中的定义、定理、公式、法则和方法.为便于读者学习和使用,在内容的编排顺序上与同济大学版高等数学保持一致;在目录上列出了手册中的重点条目;在每一章的后,提供了本章知识点之间的关联网络.本手册对正在学习高等数学、线性代数、概率论与数理统计和复习准备考研究生的读者都有极大参考价值;此外,对于曾经学过大学数学课程,并希望在短时间内迅速复习和回忆大学数学内容的读者也具有重要的参考价值.
由同济大学数学系编著的《高等数学(下第3版普通高等教育十一五*规划教材)》分上下两册。 下册分4章,内容包括空间解析几何与向量代数、多元函数的微分学及其应用、多元函数的积分学及其应用、无穷级数。本书知识系统、体系结构清晰、讲解透彻、难度适宜、语言通俗、例题丰富,适合作为普通高等院校工科类、理科类(非数学专业)高等数学课程的教材使用。可供成教学院或申请升本的专科院校的学生选用,也可供相关专业人员和广大教师参考。
本练习册与同济大学数学系编写的第七版《高等数学》下册(高等教育出版社出版)相配套,共包括两部分内容:练习题和参考答案。按时完成练习作业是理工科大学生巩固高等数学课堂学习效果的基本要求,所附参考答案可方便学生完成作业后及时检查。 为了方便教师和学生收交作业,本练习册分为A、B两册,即奇数周作业为A册,偶数周作业为B册。
《高等数学复习纲要》为在校大学生复习应试及研究生报考提供了一份理清知识脉络的提纲,为复习提供线索,为应试传输信息,《高等数学复习纲要》分为:微积分(高等数学),线性代数,概率论与数理统计三个部分。 《高等数学复习纲要》可作为各类高等院校学生的学习参考书和教师的教学参考书以及科技人员的工作参考书,也可作为各类专业学生的考研复习资料。
《全国高等教育自学考试创新型试卷系列:高等数学(一)阶梯式突破试卷》是由编者集专家的研究而组成的一套针对性训练的试卷。我们组织多所高等院校长期从事高等自学考试研究、命题、评卷的著名专家、教授,严格按照*考试大纲,编写了这套《高等数学(一)阶梯式突破试卷》。 本套试卷知识点涵盖全面,内容设计合理,实用而高效。考生可以利用本套试卷检验自己日常学习的效果,也可以在考前进行模拟演练,对所学知识进行查漏补缺。
《高等数学(第四版 下册)》的主要特色是以现代数学的观点审视经典的内容,科学组织并简洁处理相对成熟的素材,对分析、代数、几何等方面作了统一的综合处理,揭示数学的本质、联系和发展规律;注重数学概念的实际背景和几何直观的引入,强调数学建模的思想和方法;在适度运用严格数学语言的同时,注意论述方式的自然朴素、易于理解;配有丰富的图示、多样的例题和习题,便于学生理解和训练。全书的深度和广度能适应多数专业的数学基础教学需要。下册包括多元微积分、级数、常微分方程、概率论与数理统计。《高等数学(第四版 下册)》可作为高等学校理科、工科和技术学科等非数学类专业的教材,也可供经济、管理等有关专业使用,并可作为上述各专业的教学参考书。
《高等数学(第3版)/21世纪高校教材》共分九章,包括函数与向量、极限与连续、导数与微分、中值定理与导数的应用、定积分与不定积分、二重积分与曲线积分、微分方程、无穷级数、概率论基础. 《高等数学(第3版)/21世纪高校教材》每章配套习题与习题课结合使用,辅以复习题训练,目的是帮助读者理解、消化和复习教材主体内容,编写中注重培养学生良好的科学思维习惯及实际应用能力. 《高等数学(第3版)/21世纪高校教材》适用于应用型高等院校理工类和经济类各专业的公共数学课教学,也可供高等数学授课教师作为教参使用,以及提供给学生作考研辅导和竞赛指导使用.
本书与同济大学数学系主编的《高等数学》第六版下册完全配套。本书章节的划分和内容设置与《教材》一致。每节包括两大部分内容:讲解结构五大部分。 ?一、本章内容概览:对本章知识进行简要的概括。 ?二、本章知识图解:用网络结构图的形式揭示出本章知识点之间的有机联系,以便于学生从总体上系统地掌握本章知识体系和核心内容。 ?三、本节内容讲解:包含本节考查要点、教材知识全解、典型例题解析三大模块。 ?1.本节考查要点:对本节出现的知识点简洁而全面的梳理。 ?2.教材知识全解:用表格形式对每节涉及的基本概念、基本定理和公式进行系统的梳理,并指出在理解与应用基本概念、定理、公式时需注意的问题以及各类考试中经常考查的重要知识点; ?3.典型例题解析:这一部分是每一节讲解中的核心内容,也是全书的核心内容。作者基于多年的
本书是深入学习高等数学的辅导书,分上、下两册,下册共六章,包括多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数、常微分方程与差分方程、微积分在经济中的应用.各章每一节开始都有重要概念、定理及公式,概括本节的知识内容,然后是答疑解惑、典型题型及解题分析、考研真题解析,每章后给出自测题,供读者练习. 本书对学习高等数学的同学是一本很好的同步辅导教材,同时也可作为报考研究生的理想复习资料及高等数学任课教师的教学参考书。
《高等数学同步练习册/普通高等教育应用技术本科规划教材》是按照**《高等数学课程教学基本要求》,结合近几年来普通高等学校高等数学教学改革的实践、发展与变化而编写出来的,内容包括:函数与极限,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,微分方程,空间解析几何,多元函数微分法及其应用,重积分,曲线积分与曲面积分,无穷级数,每章每节的习题都是由浅人深,起到练习、巩固和提高的作用,《高等数学同步练习册/普通高等教育应用技术本科规划教材》的习题附有答案,如有需要请联系本社责编索取。 《高等数学同步练习册/普通高等教育应用技术本科规划教材》可供普通高等学校理工类本科学生使用,非理工类学生可选做,对于有志报考研究生的学生,《高等数学同步练习册/普通高等教育应用技术本科
该书稿是《大学文科数学(第四版)》配套的辅导书。该系列教辅书均根据教材章节顺序建设了相应的学习辅导内容,其中每一节的设计中包括了该节的主要知识归纳、典型例题分析与习题解答等内容,而每一章的设计中包括了该章的教学基本要求、知识点网络图、题型分析与总习题解答,有助于学生巩固教材知识并拓展应用。
杨海涛主编的《高等数学》是在贯彻落实*“高等教育面向21世纪教学内容和课程体系改革计划”要求精神的基础上,按照国家非数学类专业数学基础课程教学指导委员会*提出的“工科类本科数学基础课程教学基本要求”,并结合当前大多数本科院校学生基础和教学特点进行编写的。全书分上下两册。上册分4章,内容包括函数、极限与连续,一元函数微分学,一元函数积分学,向量代数与空间解析几何;附录包括二阶和三阶行列式简介,常用曲线方程与图像,积分表,数学建模,数学实验。下册分4章,内容包括多元函数微分学、积分学,无穷级数和微分方程,附录包括数学建模与数学实验。每册书后附有习题答案与提示。 《高等数学》知识系统、体系结构清晰、详略得当、例题丰富、语言通俗、讲解透彻、难度适中。适合作为普通高等院校工科类、理科
《高等数学同步辅导》是深入学习高等数学的辅导书,分上、下两册,本书是其中的上册,由赵翠萍、徐利艳主编。《高等数学同步辅导(上)》共七章,包括函数的极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用、空间解析几何与向量代数。各章每一节开始都有重要概念、定理及公式,概括本节的知识内容,然后是答疑解惑、典型题型及解题分析、考研真题解析,每章后给出自测题,供读者练习。 《高等数学同步辅导(上)》对学习高等数学的同学是一本很好的同步辅导教材,同时也可作为报考研究生的理想复习资料及高等数学任课教师的教学参考书。
韩慧蓉、岳忠玉编写的《高等数学同步作业与训练》是与同济大学数学系编写的《高等数学》(第六版)(上、下册)相配套的同步习题教学辅导书,全书结合教材按章同步编写,共分12章。针对普通应用型本科院校本科生的特点,精选每一章节的习题,既能保证对知识点的全面覆盖,又考虑了各种题型的广泛性与代表性。每章按照每小节一套习题、每章结束有一套自测题的形式进行编写,同时,书的*后附有期中考试和期末考试模拟试题以及2000一2014年考研真题分类汇总,通过对这些题目的分析解答,读者能更好地掌握知识点和提高综合解题能力。 本书可作为普通应用型本科院校、大学独立院校本科生学习高等数学的同步习题教学辅导书,也可供从事高等数学教学的教师布置作业和考试命题使用,还可供报考硕士研究生或自学高等数学的广大读者参考。
由于中学数学已实行教学改革,教学内容发生较大变化,严重影响了大学高等数学的教学。为使中学数学与高等数学的教学内容有效衔接,本书将高等数学需要而中学删去的数学内容统统找回来,主要内容有三角函数的积化和差与和差化积、反三角函数、参数方程与极坐标,还有中学文科数学删除的排列与组合、二项式定理、数学归纳法、复数等。 另外,本书对数学概念和思维方法也作了较详细的介绍,对学生高等数学的学习将会有很大的帮助。本书可作为高等数学课程的预修教材,可供各类大专院校不同专业的学生学习高等数学之前使用。