本书是作者在多年教学经验的基础上撰写的一部实变函数教材,第二版在第一版使用9年的基础上作了修订,第三版特别增加了部分习题参考答案与提示。本书内容包括:集合与实数集、Lebesgue测度、可测函数、Lebesgue积分、微分和积分、Lp空间。每章后均附习题与例题,以便于读者学习和掌握实变函数论的基础知识。
本书深入贴近《英语基础教程1》书本中,每一个单元的知识点。针对每个单元的四个章节,一个章节一个针对性练习。练测卷习题依据该章节中的基础词汇,短语,重点句型,语法、单元主题、写作和对口升学考试当中对应的知识点进行编写,由浅入深,紧扣整个单元所有的知识点。一个单元一张检测卷,针对本单元所学内容有一个阶段性的考查。本书在内容编排上,力求循序渐进,高效简短,针对性强的原则,每一个章节的练测卷内容量适中,便于教师安排教学,利于学生理解本章节的重要知识点,通过练习,更好的巩固所学内容。
本书是高等学校文科(包括经管类)各专业的数学教材,分上、下两册。上册含一元函数的微积分和线性代数部分,内容包括初等函数、极限与连续、变化率与导数、积分、线性代数初步、矩阵与线性方程组、矩阵的特征值与特征向量、二次型。下册含多元函数的微积分、常微分方程和概率统计部分,内容包括多元函数的微分、二重积分、无穷级数、常微分方程、随机事件的概率、随机变量及其概率分布、数理统计初步。各章均配有适当、适量的习题供读者学习巩固。
本书是作者根据在北京大学和清华大学多年的教学实践过程中编写的,并增加了部分习题。内容主要内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换和欧几里得空间。本书按教程各章习题顺序编排,使学生提高分析问题和解题的能力,加深对基本内容的理解与掌握,开发学生智能,增强对学好本门课程的信心和兴趣
《高等代数习题解(上)(修订版)》从多项式、行列式、线性议程组、矩阵等方面,精选了618道典型性较强的习题,做了全面详细的解答,并注意了一题多解。每节习题之前都对本节主要定义、定理和理要结论作了简要的概述。内容丰富,重点突出,解答明确,尤其便于自学。可供高等院校师生、中学教师和广大数学爱好者以及有志报考研究生的人员学习参考。
本书共分十二章,每章又分若干节,在章节设置上和同济大学六版高等数学教材基本一致,涉及的内容涵盖了高等数学的全部主题。在本书中每章除最后一节外每节包括两大部分内容:知识要点:简要对每节涉及的基本概念
《高等数学习题集》(第四版)是与同济大学数学系编写的《高等数学及其应用》(第二版)及吴赣昌主编的《微积分》(经管类 第三版)配套的本科院校工科类和经管类各专业学生课后综合性练习或复习用书。本习题集是在前三版习题集基础上结合新采用的教科书精细修改,增减部分内容而编写的。习题集每节后有工科类、经管类共同练习的习题,也有工科类与经管类不同的习题。每章后面还有 自我检测题 和 提高题 。在工科类或经管类题目的题号和相关节号前加 △ 或 ○ 以示区别。工科类和经管类通用的题目不加记号,个别专业使用的特殊习题在节号前加 * 号。本次习题集修订时特别增加2018年全国硕士研究生入学统一考试数学一、二、三试题和答案,供继续深造或将来报考研究生的学生尽早了解考研时高等数学等对考生的要求。
本书是普通高等教育 十一五 *规划教材、国家精品课程教材和国家电工电子教学基地教材《数字逻辑与数字系统(第5版)》(书号:ISBN 978-7-121-32537-3)的配套教材。全书共分10章,内容包括:数字逻辑基础、逻辑门电路、组合逻辑电路、触发器、时序逻辑电路、半导体存储器、可编程逻辑器件、脉冲波形的产生与整形、数模转换和模数转换、数字系统分析与设计等。每章包含学习要点、教学要求、解题指导和习题解答4部分内容。本书可作为高等学校计算机、通信、电子、电气及自动化等专业的本科生 数字电子技术 课程辅助教材,还可供从事电子工程设计与开发的技术人员参考使用。
本书分为上、下两册.上册内容包括: 函数的极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,定积分的应用共6章.全书弱化了定理证明,在例题及习题的选取上突出了应用性,强化了高等数学课程与后续专业课程的联系,便于教学和自学.本书可作为普通高等学校(少学时)、独立学院、成教学院、民办学院本科非数学专业的教材.本书还突出了高等数学在经济中的应用,因而经济类本科院校同样适用.本书封面贴有清华大学出版社防伪标签,无标签者不得销售。
本书是浙江大学盛骤等编的《概率论与数理统计》(第五版)的配套辅导书,全书按照主教材的要求和章节顺序进行编排,与主教材习题一致。本书对教材的300多道题目给出了解答,少数题目是一题多解,有些作了题目分析、解题思路分析和解答方法归纳,并指出易犯的错误,究其原因,澄清不正确的想法。通过本书的学习,可使读者提高分析问题和解题的能力,加深对基本内容的理解和掌握。 本书可作为理工科和其他非数学类专业的学生学习概率论与数理统计的参考书。
本书共分16讲,对应大一下学期16次工科数学分析习题课,内容涉及向量代数与空间解析几何、多元函数微分学及其应用、多元函数积分学及其应用、无穷级数等。每一讲的内容主要包括知识点小结、典型例题解析、练习题三部分,其中典型例题大都来自历年的考研题、有关学校的期中期末试题,题型丰富,既包括选择题、填空题,还包括计算题和证明题,且难度梯度清晰。 本书既可作为高等院校工科类各专业一年级学生同步学习工科数学分析课程的习题课教材及课程辅导用书,也可供相关老师尤其年轻的工科数学分析课程或高等数学课程老师参考。
本书严格按照“线性代数课程教学基本要求“在南京大学多年教学经验的基础上精心编写而成的,是一本大学数学基础课程的教材。本书介绍线性代数的基本理论和基本方法,内容包括行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型、线性空间与线性变换、内积空间。本书每章中都附有丰富的练习和习题,练习供学生课堂使用,习题供学生课后使用。书后对几乎全部的习题都做了比较完整的解答,使本书具有更好的适用性。本书力图体现线性代数教学改革精神,在选材上深入浅出,理论上引人入胜,方法上精巧多彩。这样编排的目的在于使读者深刻领会数学思想,掌握数学技巧,提高数学能力。本书可作为高等院校开设线性代数课程的各专业的教材,也可以作为考研忱者备考的参考用书。
本书依据 大学生数学竞赛大纲与江苏省普通高等学校高等数学竞赛大纲,并参照 制订的考研数学考试大纲编写而成,内容分为 限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、空间解析几何、级数、微分方程等八个专题,每个专题含“基本概念与内容提要”“竞赛题与精选题解析”与“练习题”三个部分。其中,竞赛题选自 大学生数学竞赛试题(非数学专业组), 硕士研究生入学考试试题,江苏省、北京市、浙江省、广东省等省市大学生数学竞赛试题,南京大学、东南大学、清华大学等高校高等数学竞赛试题,莫斯科大学等国外高校大学生数学竞赛试题.;另外,从近几年 硕士研究生入学考试试题中也挑选了一些“好题”,作为本书的有力补充。这些题目中既含基本题,又含很多构思巧妙、解题技巧性强,具有较高水平和较大难
《高等数学习题全解与学习指导》分上、下两册。下册内容为向量与空间解析几何,多元函数微分学,多元函数积分学,无穷级数配套习题讲解。书中各章节的主要内容都配有精心选取的例题和习题,着重训练读者对定义与概念的理解、对定理与方法的应变能力,培养读者解决问题的逻辑思维方法和创新能力。
配套教材的编制有利于学生掌握教材的重点、难点,起到教学大纲的作用,又可使学生对课堂知识进行复习、练习,加深对课堂知识的了解和掌握,同时,配套教材还可以将课堂中因为学时限制而不能详细讲解的内容进行扩展学习。
本书总结了“线性代数与解析几何”课程的知识要点,将各章内容分为知识图谱、知识要点、典型例题、习题及详解4部分。对概念和解题方法分析透彻、深入浅出,便于自学。书中精选了220余道各类有代表性的典型例题。给出了《线性代数与解析几何》(第三版)(李继成、魏战线编)全部600余道题的完整解答,并附了4套西安交通大学本课程期末考试题及解答。本书可作为高等院校的理工科学生学习“线性代数与解析几何”课程的辅导书,可供报考硕士研究生的读者复习应考之用,也可供有关教师和科技工作者参考。
《高等数学(下册)》是根据*“理工类本科高等数学课程教学基本要求”编写的“高等数学”教材,编者全部是具有丰富教学经验的教学一线教师。全书共十二章,分上、下两册出版。上册内容包括:极限,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,常微分方程等;下册内容包括:空间解析几何与向量代数,多元函数微分法及其应用,重积分,曲面积分与曲线积分,无穷级数及傅里叶级数等。本书按节配置习题,每章有总练习题,书末附有答案与提示,便于读者参考。 本书根据理工类学生的实际要求及相关课程的设置次序,对传统的教学内容在结构和内容上作了合理调整,使之更适合新世纪“高等数学”教学理念和教学内容的改革趋势。其主要特点是:选材取舍精当,行文简约严密,讲解重点突出,服务后续课程,衔接考研