本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
《高等数学解题指南》是理工医农各专业的大学生学习 高等数学 课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生初学时遇到的难点与易犯的错误,通过精心挑选的典型例题进行分析、讲解与评注,给出归纳和总结,以帮助学生更好地理解 高等数学 课的内容,掌握其基本理论和正确的解题方法与技巧。全书共分13章,内容包括:一元微积分,空间解析几何,多元微积分,无穷级数(包含傅里叶级数)与常微分方程等。在每一节中,设有基本理论内容提要,典型例题的讲解与分析,以及供学生自己做的练习题等部分,书末附有练习题的答案。为了适应不同程度学生的要求,本书还较系统地讲解了适量的综合题和一定难度的例题(以*号标出),这些内
本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
《高等数学习题集》自2000年出版*版以来,受到读者的一致好评,现出版第五版,在保持原有特色和风格的基础上,增减和修改了部分习题,加强了相关内容的基本概念、基本理论和基本技能的训练,每个章节的习题搭配上更注意 坡度 ,且题型及内容更趋于合理。本书结构参照同济大学应用数学系编写的《高等数学》(第七版)内容顺序编排;在能力提高部分,又精选和增加了近来年部分考研题,供学有余力的学生选做;在附录中,仍保留《三角函数基本公式》,供学生学习时查阅。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书是依据*颁布的《工科类本科数学基础课程教学基本要求(2014年版)》编写的。编者改革了高等数学教材传统编写方式,本书编写中重背景、重体系、重探究、重体验、重实践、重反思;知识展现通俗、易懂、简洁、形式多样,便于教师教学和学生自学;每一节设计了一些问题讨论题,这些问题基本是开放性的,目的是帮助学生检验学习效果,引导学生加深对知识的理解,提高思维深刻性。每章结尾按基础知识考查和综合能力提高设计了A,B组测试题,供学生自我检测。本书分上、下两册,共11章,上册包括数列与函数极限、一元函数的导数与微分、微分中值定理与导数的应用、不定积分、定积分及其应用、向量代数与空间解析几何等内容。
本书作为国家精品教材同济大学数学系《高等数学》的配套用书,书中精选了大量源自各高校的各种考试试题,具有集中要点,与教学同步;多级筛选,突出重点等特点。本书可作为本科院校学生学习高等数学课程的参考用书。
本书是一本用于同名课程双语教学的英文教材,编者参考多本有关的经典原著英文教材,按照国家*对本课程的基本要求,结合多年的教学实践编撰而成.内容分两部分,共8章。第1~6章为复变函数部分,包括complexnumbersandfunctionsofacomplexvariable(复数与复变函数),analyticfunctions(解析函数),complexintegrals(复积分),series(级数),residues(留数),conformalmappings(保形映射)。第7章和第8章是积分变换部分,包括Fouriertransform(傅里叶变换)和Laplacetransform(拉普拉斯变换)。书中各章节都安排了足够量的例题,在每章后也安排了大量精选的习题,并按大纲的要求及难易程度分为A、B两类。
本书是按照新形势下教材改革的精神,结合国家工科类本科数学课程教学基本要求,以及国家重点大学的教学层次要求,汲取国内外教材的长处编写而成,本书分上、下两册。上册内容包括函数与极限,导数与微分,导数的应用,不定积分,定积分,定积分的应用,空间解析几何与向量代数。内容与中学数学相衔接,满足“高等数学课程教学基本要求”,还考虑到了研究生入学考试的需求。书中各章配制了二维码,读者可以通过扫码看授课视频来学习和巩固对应知识,同时,视频有助于教师的翻转课堂教学。 本书注重教学内容与体系整体优化,重视数学思想与方法,适当淡化运算技巧,充分重视培养学生应用数学知识解决实际问题的意识与能力,安排数学实验,使数学教学与计算机应用相结合。
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本套教材为全国高等学校五年制本科临床医学专业第九轮规划教材,是我国医学教育领域起步*早、历史*悠久、修订版次*多的权威、规范、科学、经典的*规划教材。第八轮教材自2013年秋季出版至今,已经4年时间,修订再版是学科知识及医学教育发展的需要。本次修订将根据医学教育发展的需要,注重课程体系的优化改革和教材体系建设的创新,并继续坚持"三基、五性、三特定"的教材编写原则,更新内容,体现继承与发展。
古算诗词题是我国珍贵的文化遗产。我国古算家文理兼优,把博大精深的古算名题和算法推理编成耐人寻味、朗朗上口的诗词或歌谣,使抽象难懂的数学题形象生动、易于理解和记诵,同时激发人们学习数学的兴趣。本书精选出古代数学中的约200首中外诗词题进行注释,译为白话文,并且重点给出古今240多种不同解法,有的还补充出原著省略的算理。本书按主要解题的方法为序编排诗词题,方便读者查阅、使用。
《高等数学》课程是湖北省省级精品课程。内容包括:函数、极限与连续、微积分及其应用、向量代数与空间解析几何、多元函数微分学、多元函数积分学、无穷级数、微分方程、差分方程、应用数学模型等。按教材内容和体系展开,每章含基本要求、内容提要、疑难解析、例题精讲、综合练习、答案与提示等环节。
本书是为学习高等数学的读者编写的,按国内通常高等数学教材知识点布局,分为十二章,每章设若干节、知识脉络图和按章模拟考题.各节均设诸栏目,对高等数学的主要知识点进行归纳,释疑解惑,剖析典型例题,揭示解题方法与技巧,并配制两级测试题及答案与提示,供学生自测.
本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
《高等数学(工科类)(第二版)》是“高等职业教育数学系列教材”之一的工科类“高等数学”课程的教材。本书按照*制定的工科类“高等数学课程教学基本要求”进行编写,反映了当前高等职业教育培养高素质实用型人材数学课程设置的发展趋势及教学理念。 《高等数学(工科类)(第二版)》突出体现了作者在教学线积累的丰富教学经验,注重对学生基础知识的传授和基本能力的培养。对数学概念的引入强调几何背景和物理意义,对基础训练既强调对概念的理解又兼顾计算的基本技能.为此,对重点内容作者设计了“想一想”、“试一试”、“注意”等小标题,以启发读者思考.对有专升本试题的章节,其每小节的习题分为(A)、(B)两组,其中(A)组是基础题,(B)组是选自专升本的试题. 书后附有习题答案或提示.每章后设计了有关本章内容的
本书是作者多年来在大学生数学竞赛辅导和考研辅导经验的基础上编写而成的.全书共分为13 章,每章包括4 个模块,即知识要点、典型例题分析、深化训练以及深化训练详解.本书编写的目的主要有两个:一是帮助工科类、经管类本科生备考全国大学生数学竞赛,使学生能够在短时间内迅速掌握各种解题方法和技巧,提升学生综合分析问题、解决问题的能力;二是为了满足工科类、经管类本科生考研的需要. 在例题和习题选编方面,精选了部分有代表性的数学竞赛真题和考研真题,同时注重例题、习题的创新,按题型分类进行合理编排,使学生能够尽快地适应考研题型,从容应对考试.本书既可以作为普通高等院校工科类、经管类本科生参加全国大学生数学竞赛的辅导用书,也可以作为工科类、经管类本科生考研深化训练用书.
本书根据高等院校理工类本科专业高等数学课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应二维码即时实现实验操作。本书共分上下两册,本册包括函数与极限、一元微分学、一元积分学、微分方程等知识。本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
结合高等数学问题及工程科学计算应用的需求,从实际应用出发,通过大量的算法实现,详细、系统地介绍如何用MATLAB求解数学问题。 栾颖编著的《MATLABR2013a求解数学问题》知识覆盖面广,包括数学的各应用方面,通过大量的实例演示让读者有目的、有方向地学习MATLAB。主要内容包括MATLAB的使用、MATLAB基础知识、矩阵及数组、求解线性方程组/非线性方程组求解、高级程序与优化、数据分析、符号运算和数值微积分等内容。 本书既可作为高等院校各理工科专业数学课程的教学参考书,也可作为MATLAB自学人员、爱好者的教材,还可作为工程技术人员、理工科硕士生及博士生的工具书。
线性代数是数学的一个分支,它的研究对象是向量、向量空间(或称线性空间)、线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 《线性代数》是理工类和经管类高等院校学生必修的一门重要基础理论课程。它的基本概念、理论和方法,具有较强的逻辑性、抽象性和广泛的实用性。通过该课程的学习,能使学生掌握该课程的基本理论和基本方法,且对学生其他能力的培养(如逻辑推理能力、抽象思维能力)和数学素养的提高也有着重要的作用。这些理论方法和能力为一些后续课程的学习及在
本书共分三章:*章斯蒂尔切斯积分,第二章集合函数与勒贝格积分,第三章集合函数、*连续性、积分概念的推广。理论部分叙述扼要,应用部分叙述详尽。