《泛函分析》为普林斯顿分析译丛中的第四册泛函分析,其内容分为8章,第1章介绍Lp空间和Banach空间,第2章过渡到调和分析中的Lp空间,第3章讨论分布:广义函数,第4章讲述Baire纲定理的应用,第5章为概率论基础,第6章介绍Brownian运动,第7章为多复变引论,第8章介绍Fourier分析中的振荡积分,全书展现了泛函分析理论的基本思想,特别强调它与调和分析的联系。 《泛函分析》可作为数学专业高年级本科生或研究生的泛函分析教材,同时也可作为相关科研工作者的参考书。
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及最值,作图,轨迹,平面闭折线,圆的推广十个专题。对平面几何中的500余颗璀璨夺目的珍珠进行了系统地、全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果。 本书中的1500余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及近期新成果。 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设“竞赛数学”“中学几何研究”等课程的教学参考书。
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。第1章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。
本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
本书是作者根据多年从事高等代数与解析几何课程教学的经验编写而成的。本书分上、下两册。上册主要包括:空间向量、平面与直线、矩阵初步与n阶行列式、矩阵的秩与线性方程组、多项式、矩阵的相似与若尔当标准形;下册主要包括:常用曲面、二次型与矩阵的合同、线性空间、线性变换、欧氏空间。本书在编写中将二次型及其矩阵的特征值这一历史上的经典问题作为引入整个课程内容的一条叙述主线,将高等代数与解析几何有机地结合起来。本书合理地引入了每一个重要概念,给出了主要定理的推理步骤,设置了不少经典例题和习题来指导学生理解和运用这些定理。
本书系统地介绍分数阶微积分学与分数阶控制领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法;提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架,为解决分数阶控制系统的仿真问题奠定了基础;开发面向对象的分数阶系统控制的MATLAB工具箱,可以用于多变量分数阶系统的建模、分析与控制器设计的全过程。本书所有知识点均配有高质量的MATLAB代码,有助于读者更好地理解知识点的内涵,更重要地,可以利用代码实践并创造性地解决相关问题。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
《高等代数辅导与习题解答 北大·第5版》 本书是与北京大学数学系编写的教材《高等代数(第五版)》配套的学习辅导书,是由教材作者亲自编写的。本书与教材的编排顺序一致,分为十章。每章中有内容提要、学习指导、习题与补充题的提示与解答,最后是总习题解答。本书的目的是帮助读者更好地学好教材的内容,要求读者切实按前言中提出的学习步骤和要求来学习,从而提高学习效果和解题能力,而不要把本书仅作为习题解答来使用。此外,学习指导部分加入了一些抽象概念(如线性相关、线性无关、向量组的秩等)的数学背景和来源等精彩内容,这在一般书中是少见的。本书适合高等学校数学类专业作为高等代数课程的参考书,也可供广大读者学习时参考。 《高等代数 第5版》 本书是第五版,基本上保持了第四版的内容,增加了几个应用例题,改写了
高等数学(理工类)(第三版)
《高等代数》是高等代数课程的教材,是作者积40多年在北京大学讲授高等代数及相关课程,以及从事科研工作的经验和心得写成的,有许多独到的科学见解。《高等代数》鲜明地突出了 研究线性空间的结构及其态射(即线性映射) 这条主线,科学地安排讲授体系:**章线性方程组的解法;第二章行列式;第三章线性空间;第四章矩阵的运算;第五章一元多项式环;第六章线性映射;第七章双线性函数,二次型;第八章辟度量的线性空间;第九章n元多项式环。《高等代数》精心配备每一节的例题和习题。《高等代数》力求使高等代数与几何水乳交融,并按照数学的思维方式编写各章节的内容,使学生既比较容易地学到高等代数的知识,又从中受到数学思维方式的熏陶和训练,另夕卜《高等代数》还配有辅导资料《高等代数习题答案与提示》供读者参考。
内容简介: 本书分高等数学基础篇和高等数学提高篇两册 , 基础篇主要包括高等数学基础知识点的讲解和相应的练习题 , 起到温故知新的作用 ; 提高篇主要包括对高等数学综合性试题的分析和解答 , 注重数学抽象思维的呈现 , 以提高学生综合分析和解决问题的能力为目的 。
本书是理工科、技术学科、经济与管理、医学、农林等类学生学习高等数学课程的学习辅导书。全书共八章:极限与连续,一元函数微分学,一元函数积分学、空间解析几何、多元函数微分学,多元函数积分学、级数和常微分方程。本书重视教学内容与习题解析的同步衔接,由浅入深地讲解了大量例题,同时注重整合知识,科学地指导学生进行解题的训练与复习,并提供了进一步深入学习研究的习题。本书的深度和广度能适应大多数专业的数学学习需要,同时对于有志报考研究生的学生来说,也是一本较全面的复习用书。
吉米多维奇数学分析习题集题解(套装6卷本) 定价 148.00 出版社 山东科学技术出版社 版次 1 出版时间 2018年08月 开本 16开 作者 费定晖,周学圣 装帧 平装-胶订 页数 0 字数 0 ISBN编码 9787533185701 重量 0
内容简介: 本书既可以看成是大学数学教材,也可视为高级普及读物,关于这类图书的必要性我们可以借助下面这个例子来说明.英国著名天文学家、物理学家霍金去年去世,许多杂志都刊登了纪念文章,其中三联生活周刊的一篇访谈问道霍金的这种运用物理和几何方法相结合的研究方式,对物理学界来说难度有多大? 著名专家陈学雷回答说:掌握这些理论基础的难度还是非常大的.举个例子,70年代的时候,霍金和他的一个同学乔治( George Ellis)合写了一本理论性的学术书籍《时空的大尺度结构》.按理说,书出版后,大家只要学习书的内容就可以了,但实际上大部分人看都看不懂.后来芝加哥大学的罗伯特( Robert walc)写了一本书把这些内容简化了一些写得更清楚简明了一些,大家才容易看懂一些.物理界的人逐渐看懂了,但看起来还是挺费劲的,我国的梁灿彬先生是罗伯特的学生,又写
本书以"中国大学生数学竞赛大纲"为依据,是专门为大学生数学竞赛而编写的,可作为本科大学生数学竞赛培训的教材,也可作为学习高等数学的参考书。本书主要内容包括极限与连续、一元函数微分学、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数、微分方程及国内外竞赛试题精选等八章。全书对高等数学的常见题型、解题方法及技巧进行了归纳总结,对竞赛涉及的知识点进行了梳理,所选例题、习题层次分明,题型丰富.全书结构新颖、选材适当,是一部合适的大学生数学竞赛辅导教材。
本书是根据 高等学校本科教学质量与教学改革工程 的需要,参照高等学校数学与统计学教学指导委员会发布的《理工类本科数学基础课程教学基本要求》,参考《全国硕士研究生入学统一考试数学考试大纲》编写而成的。《BR》 全书分上、下册出版,本书为上册。上册内容包括:绪论,函数、极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分,定积分的应用,空间解析几何与矢量代数8章内容。书末附有初等数学常用知识、几种常用曲线及其方程、积分表、Mathematica软件包的常用系统函数。全书每节后都配有精选的习题,既有基础题又有应用广泛的综合题。每章后还附有分层次教学测试练习题、Mathematica数学实验和数学欣赏。充分考虑分层次教学的需要,对全方位提升学生的综合素质和创新能力等方面起到积极的作用。
本书在讲授了随机微分方程、随机反应扩散方程、随机Navier-Stokes方程和带切换的随机微分方程解的存在唯一性和正则性的基础上,系统地讲授了加性噪声和乘性噪声驱动的随机发展方程的适定性及正则性,总结了Hilbert空间和Banach空间中随机发展方程遍历性证明方法,简要讲述随机动力系统的-Zakai逼近及随机系统同步分析方法,总结了作者在分数阶偏微分方程、随机弱耗散系统和随机流体类发展方程的数值遍历性方面的研宄成果。
本套书作为大学 高等代数 课程的创新教材,是*优秀教学团队(北京大学基础数学教学团队)课程建设的组成部分,是*教学名师多年来进行高等代数课程建设和教学改革的成果。本套书以讲述线性空间及其线性映射为主线,遵循高等代数知识的内在规律和学生的认知规律安排内容体系,按照数学思维方式编写,着重培养数学思维能力。上册内容包括线性方程组,行列式,n 维向量空间Kn,矩阵的运算,矩阵的相抵与相似,以及矩阵的合同与二次型等。下册内容包括一元和n 元多项式环,线性空间,线性映射,具有度量的线性空间,以及多重线性代数。书中每节均包括内容精华、典型例题、习题,章末有补充题,还特别设置了 应用小天地暠板块。本书内容丰富、全面、深刻,阐述清晰、详尽、严谨,可以帮助读者在高等代数理论上和科学思维能力上达到相当的高度。本书适合用作综合大学、高等师
本书是在教育大众化的新形势下,根据编者多年的教学实践,并结合“高等数学课程教学基本要求”编写的。 全书分上、下两册。上册共7章,内容包括一元函数的极限与连续、导数与微分、微分中值定理与导数的应用、不定积分、定积分、定积分的应用、向量代数与空间解析几何。上册书后附有数学建模简介、上册部分习题答案与提示、基本初等函数的定义域、值域、主要性质及其图形一览表、极坐标系简介、二阶和三阶行列式简介、几种常用的曲线、积分简表、记号说明。下册共5章,内容包括多元函数微分法及其应用、重积分、曲线积分与曲面积分、无穷级数、微分方程。下册书后附有下册部分习题答案与提示。 书中附有光盘一张,光盘的内容有两部分:一部分是与本书配套的高等数学多媒体学习系统,另一部分是本书中全部练习题的解答(有解答过