偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
《泛函分析》为普林斯顿分析译丛中的第四册泛函分析,其内容分为8章,第1章介绍Lp空间和Banach空间,第2章过渡到调和分析中的Lp空间,第3章讨论分布:广义函数,第4章讲述Baire纲定理的应用,第5章为概率论基础,第6章介绍Brownian运动,第7章为多复变引论,第8章介绍Fourier分析中的振荡积分,全书展现了泛函分析理论的基本思想,特别强调它与调和分析的联系。 《泛函分析》可作为数学专业高年级本科生或研究生的泛函分析教材,同时也可作为相关科研工作者的参考书。
本书是作者根据多年从事高等代数与解析几何课程教学的经验编写而成的。本书分上、下两册。上册主要包括:空间向量、平面与直线、矩阵初步与n阶行列式、矩阵的秩与线性方程组、多项式、矩阵的相似与若尔当标准形;下册主要包括:常用曲面、二次型与矩阵的合同、线性空间、线性变换、欧氏空间。本书在编写中将二次型及其矩阵的特征值这一历史上的经典问题作为引入整个课程内容的一条叙述主线,将高等代数与解析几何有机地结合起来。本书合理地引入了每一个重要概念,给出了主要定理的推理步骤,设置了不少经典例题和习题来指导学生理解和运用这些定理。
本书由三部分内容组成。第一部分是测度论基础(第1~3章)。主要介绍测度的扩张定理和分解定理,Lebesgue-Stieltjes测度、可测函数及其积分的基本性质,还有乘积可测空间和Fubini定理等。第二部分是第4~6章。主要介绍独立随机变量序列的极限定理,包括中心极限定理、级数收敛定理、大数定律和重对数律。在介绍中心极限定理之前,介绍了测度的弱收敛、特征函数以及相关结论。这部分内容突出了经典的概率论证明技巧。第三部分为第7、8章,介绍一些特殊的随机过程。第7章介绍离散鞅论,第8章简单介绍了马氏链、布朗运动和高斯自由场。
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。第1章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。
本书筛选了近年来的各地高考圆锥曲线试题,内容上注重题型归类和方法总结,以便师生直接利用和进一步研究解题方法,凸显了“知识问题化”“题目典型化”“方法通俗化”的特点,并且把一些基本的、有价值的题目进行了推广,寻求通性、通法。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
本书系统地介绍分数阶微积分学与分数阶控制领域的理论知识与数值计算方法。特别地,作者提出并实现一整套高精度的分数阶微积分学的数值计算方法;提出线性、非线性分数阶微分方程的通用数值解法和基于框图的通用仿真框架,为解决分数阶控制系统的仿真问题奠定了基础;开发面向对象的分数阶系统控制的MATLAB工具箱,可以用于多变量分数阶系统的建模、分析与控制器设计的全过程。本书所有知识点均配有高质量的MATLAB代码,有助于读者更好地理解知识点的内涵,更重要地,可以利用代码实践并创造性地解决相关问题。
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
《高等代数辅导与习题解答 北大·第5版》 本书是与北京大学数学系编写的教材《高等代数(第五版)》配套的学习辅导书,是由教材作者亲自编写的。本书与教材的编排顺序一致,分为十章。每章中有内容提要、学习指导、习题与补充题的提示与解答,最后是总习题解答。本书的目的是帮助读者更好地学好教材的内容,要求读者切实按前言中提出的学习步骤和要求来学习,从而提高学习效果和解题能力,而不要把本书仅作为习题解答来使用。此外,学习指导部分加入了一些抽象概念(如线性相关、线性无关、向量组的秩等)的数学背景和来源等精彩内容,这在一般书中是少见的。本书适合高等学校数学类专业作为高等代数课程的参考书,也可供广大读者学习时参考。 《高等代数 第5版》 本书是第五版,基本上保持了第四版的内容,增加了几个应用例题,改写了
【6号库】 数学与猜想 数学中的归纳和类比 第一卷 定价 48.00 出版社 科学出版社(中国) 出版时间 2013年07月 开本 32开 作者 G.波利亚 页数 0 ISBN编码 9787030091109 内容简介 《数学名著译丛 数学与猜想:数学中的归纳和类比(第1卷)》是著名数学家G.波利亚撰写的一部经典名著,书中讨论的是自然科学、特别是数学领域中与严密的论证推理完全不同的一种推理方法 合隋推理(即猜想),《数学名著译丛 数学与猜想:数学中的归纳和类比(第1卷)》通过许多古代著名的猜想,讨论了论证方法,阐述了作者的观点:不但要学习论证推理,也要学习合情推理,以丰富人们的科学思想,提高辩证思维能力,《数学名著译丛 数学与猜想:数学中的归纳和类比(第1卷)》的例子不仅涉及数学各学科,
本书共分四章 : 重积分 、 曲线积分 、 反常积分及依赖与参变量的积分 , 向量分级及场论 , 微分几何基础 , 傅里叶级数 。 理论部分叙述扼要 , 应用部分叙述详尽 。
本书在讲授了随机微分方程、随机反应扩散方程、随机Navier-Stokes方程和带切换的随机微分方程解的存在唯一性和正则性的基础上,系统地讲授了加性噪声和乘性噪声驱动的随机发展方程的适定性及正则性,总结了Hilbert空间和Banach空间中随机发展方程遍历性证明方法,简要讲述随机动力系统的-Zakai逼近及随机系统同步分析方法,总结了作者在分数阶偏微分方程、随机弱耗散系统和随机流体类发展方程的数值遍历性方面的研宄成果。
《高等代数》是高等代数课程的教材,是作者积40多年在北京大学讲授高等代数及相关课程,以及从事科研工作的经验和心得写成的,有许多独到的科学见解。《高等代数》鲜明地突出了 研究线性空间的结构及其态射(即线性映射) 这条主线,科学地安排讲授体系:**章线性方程组的解法;第二章行列式;第三章线性空间;第四章矩阵的运算;第五章一元多项式环;第六章线性映射;第七章双线性函数,二次型;第八章辟度量的线性空间;第九章n元多项式环。《高等代数》精心配备每一节的例题和习题。《高等代数》力求使高等代数与几何水乳交融,并按照数学的思维方式编写各章节的内容,使学生既比较容易地学到高等代数的知识,又从中受到数学思维方式的熏陶和训练,另夕卜《高等代数》还配有辅导资料《高等代数习题答案与提示》供读者参考。
在这本引人入胜的科普经典中,著名英国数学家斯图尔特用清晰流畅、幽默风趣的语言阐明了群、集合、子集、拓扑、布尔代数等“新数学”的基本概念,他认为理解这些概念是把握数学真正本质的很好途径。此外,作者还对函数、对称、公理学、计数、拓扑学、超空间、线性代数、实分析、概率论、计算机、现代数学的应用等主题作了发人深省的讨论。读者无需任何高等数学背景,只需对代数、几何和三角学略知一二,便可读懂本书的大部分内容。读罢此书,你会更清楚地理解现代数学家对图形、函数和公式的看法,以及“新数学”的基本思想如何有助于领会数学的本质。
本书共分四章 : 重积分 、 曲线积分 、 反常积分及依赖与参变量的积分 , 向量分级及场论 , 微分几何基础 , 傅里叶级数 。 理论部分叙述扼要 , 应用部分叙述详尽 。