《抽象代数习题精选精解》章是抽象代数的基本概念。第二章是群论,内容包括循环群、置换群、不变子群、商群、群同态、群在集合上的作用、Sylow定理、群的直积等。第三章是环和域,内容包括整环、除环、理想、商环、环同态、素理想与极大理想等。第四章是整环的因子分解。第五章是域,包括素域、单扩域、代数扩域、有限域等。 我们在《抽象代数习题精选精解》各节的部分给出了相关内容的定义和重要结论,这些是相关内容的重点和难点;第二部分给出了大量的习题,并将习题按照知识点分类,难易搭配,以便帮助读者更好地掌握相关知识以及更好地掌握解题技巧。我们对《抽象代数习题精选精解》的习题解答努力做到详尽,希望能够为读者学习这门课程提供帮助。
作者是训练有素、造诣精深的数学家,曾发表过一些突破性结果。本书网述解析数论之指数和估计这一分支的一些新技术和新方法,取材于作者已发表或尚未发表的工作、为此本书首先详细讲解了经作者改进后的vanderCorput方法、由作者给出的vanderCorput方法正确的二维发展、以及由Bombieri等人引进的将指数和估计转化为计数问题的重要下等式。本书的主要结果,包括作者对(0,5十it)估阶等经典问题60年来运用正确的二维方法首次获得的结果(指出了Tichmarsh等人的错误)、作者对Walfisz历时50年前的一个结果的改进、作者对陈景润历时30年的一个结果的改进、作者对贾朝华和Baker历时20年的两个结果的改进、对吴杰历时10年的一个结果的改进、作者关于4-full数分布渐近公式的结果以及作者关于Able群问题迄今为止的结果,书末的录选辑了作者自2005年以来陆续发现的当代主流数论
《国外数学著作·原版系列:解析数论问题集(第2版)(英文)》是国外数学著作原版系列之一,解析数论,为数论中的分支,它使用由数学分析中发展出的方法,作为工具,来解决数论中的问题。它出现在数学家狄利克雷使用数学分析方法证明狄利克雷定理。
本书根据高等院校理工类本科专业线性代数课程的教学大纲及考研大纲编写而成,并在第四版的基础上进行了修订和完善。引入了大量的数学实验,可以通过扫描对应即时实现实验操作。本书内容涵盖了行列式、矩阵、线性方程组、矩阵的特征值、二次型等知识。 本书可作为高等院校(少课时)、独立学院、成教学院、民办院校等本科院校以及具有较高要求的高职高专院校相关专业的数学基础课教材,并可作为上述各专业领域读者的教学参考书。
本书是《组合数学(第4版)》的修订版,全书共分7章,分别是排列与组合、递推关系与母函数、容斥原理与鸽巢原理、Burnside引理与Pólya定理、区组设计、编码简介和组合算法简介.丰富的实例及理论和实际相结合是本书一大特点,有利于对问题的深入理解.本书是计算机相关专业本科生和研究生的教学用书,也可作为数学专业师生的教学参考书.本书封面贴有清华大学出版社防伪标签,无标签者不得销售。