这本《线性代数核心思想及应用》由王卿文编著,运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当或略高于硕士研究生入学考试的典型、实用而新颖的 282道例题和141个习题,以此向读者展示线性代数核心思想和技术的具体应用。书末附有详细的习题答案。 《线性代数核心思想及应用》可供理工科专业的大学生、研究生、高校数学教师以及使用线性代数和矩阵论知识的科技工作者阅读使用。特别适合参加硕士研究生入学考试的考生以及参加大学生数学竞赛的学生参考。
本书是一本的现代教材,给出新的线性代数基本介绍和一些有趣应用,目的是帮助学生掌握线性代数的基本概念及应用技巧,为后续课程的学习和工作实践奠定基础。主要内容包括线性方程组、矩阵代数、行列式、向量空间、特征值与特征向量、正交性和小二乘法、对称矩阵和二次型、向量空间的几何学等。此外,本书包含大量的练习题、习题、例题等,便于读者参考。
方捷编著的《格论导引/现代数学基础》讲述格论的基本概念与基础知识。其内容涵盖:有序集、保序映射、格与半格、完全格、理想与同态、格同余等基本概念;模格与半模格;分配格;有补格与布尔代数;伪补代数;Heyting代数(或称剩余格);deMorgan代数;Priesdey拓扑对偶理论。在目前格论研究领域中,Priemey拓扑对偶空间理论是一个强有力的工具。为此,作者专门在第八章中给予详细的介绍,并附加一节介绍拓扑学的相关概念和基本性质,力求读者可以不借助拓扑学的教材也能理解、掌握相关的内容。《格论导引/现代数学基础》内容适合不同层次的读者,可作为数学与计算机类专业本科生或研究生格论课程的教材或教学参考书。
本书严格按照“线性代数课程教学基本要求”在南京大学多年教学经验的基础上精心编写而成的,是一本大学数学基础课程的教材。本书介绍线性代数的基本理论和基本方法,内容包括行列式、矩阵、向量、线性方程组、矩阵的特征值与特征向量、二次型、线性空间与线性变换、内积空间。本书每章中都附有丰富的练习和习题,练习供学生课堂使用,习题供学生课后使用。书后对几乎全部的习题都做了比较完整的解答,使本书具有 好的适用性。本书力图体现线性代数教学改革精神,在选材上深入浅出,理论上引人入胜,方法上精巧多彩。这样编排的目的在于使读者深刻领会数学思想,掌握数学技巧,提高数学能力。本书可作为高等院校开设线性代数课程的各专业的教材,也可以作为考研读者备考的参考用书。
《泛函分析中的反例》汇集了泛函分析中的大量反例,主要内容有度量空间、赋范线性空间、线性算子、弱拓扑和弱+拓扑、向量值函数、不动点理论、Hilbert空间、线性算子的谱。书中对Banach空间的同构理论、基、凸性和范数可微性方面的反例也做了介绍。 《泛函分析中的反例》可供高等学校数学类各专业的本科生、研究生以及教师参考。
本书结合高职教育的特点和学生的基础状况,以培养高素质复合型、创新型技术技能人才为目标,选择并整合教学内容,融入大量的案例,辅助计算机软件计算,创新开发了实践任务书,使学生对数学的基本方法和思维方式有一个清晰的认识,为学生将来学习专业课程,自如运用高等数学的知识,分析和解决实际问题打下基础. 本书作为高职院校公共基础课程 “线性代数与概率统计” 的创新教材,内容包括案例引入、内容精华、典型例题、计算软件结果展示、随堂小练、阶段习题(进阶题、提高题),每章有拓展阅读. 为了 加清楚地讲解每章的重点、难点以及典型例题,本书还配有微课视频.本书内容丰富、全面、深刻,简明易懂、详尽、严谨,可以帮助学习者在理论上和科学思维能力上达到一定的高度,便于学生自学. 书后附有软件使用简介、习题答案等. 本书
《高等代数解题方法与技巧》共6章,主要包括矢量代数与解析几何,一元多项式与行列式,矩阵及其在线性方程组和二次型理论中的应用,线性空间与线性变换,双线性函数与二次型,域上多元多项式环等内容。《高等代数解题方法与技巧》通过解答典型例题,阐释基本理论、思维方式和解题技巧;特别强调代数和几何的结合,强调各个知识点之间的联系和整合。在强调思想方法的同时,也重视技巧的训练,将思维与方法渗入到例题与习题中,使读者在学习高等代数知识的同时,掌握高等代数的思维方法,提高运用综合知识解决问题的能力和技巧。 《高等代数解题方法与技巧》适合理工科本科生使用,也适合有较好基础的数学爱好者。
本书是\\\"小学数学教师·新探索\\\"系列中的一本,聚焦小学生早期代数的学习与诊断,以小学数学课程中的7个典型教学内容(分别是几何图形的模式概括、加法运算中的数值推理、乘法分配律的学习进阶、线性模型解文字题、解方程的教学干预、等号的理解、分数情境中是数学抽象)为切口,通过课堂观察、结构化访谈、视频分析、数据对比等方式,重点考察学生在代数学习中如何建构数学关系、模式和算术结构,同时密切关注其推理过程,从而探索在低年级阶段渗透早期代数思维的可行路径。 本书对 外涉及早期代数的相关研究作了比较系统的梳理,具有一定的